Question

1. The 3rd harmonic in a closed pipe is the overtone of the fundamental.    (a)...

1. The 3rd harmonic in a closed pipe is the overtone of the fundamental.   

(a) 1st (b) 2nd (c) 3rd   

2. T/F: In a longitudinal standing wave, a displacement node is a pressure antinode.

3. A place of max/min pressure in a longitudinal standing wave is called a

(a) rarefaction (b) refraction (c) compression (d) pressure node

Homework Answers

Answer #1

(1) Since, the second harmonic which is twice of the fundamental frequency, also known as the first overtone. Then the third harmonic in a closed pipe is the second overtone of the fundamental. So, the correct option will be (b) 2nd.

(2) For a longitudinal standing wave, a displacement node is always a pressure antinode. So, this is a true (T) statement.

(3) Since, a place of maximum or minimum pressure in a longitudinal standing wave is called as a pressure node. So, the correct option will be (d) pressure node.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Four standing waves, labeled A through D, are described below: Wave A: first harmonic; pipe closed...
Four standing waves, labeled A through D, are described below: Wave A: first harmonic; pipe closed at one end; length = 1 m Wave B: first harmonic; pipe open at both ends; length = 1 m Wave C: second harmonic; pipe open at both ends; length = 3 m Wave D: second harmonic; pipe closed at one end; length = 3 m Rank the standing waves in order of decreasing frequency. Rank from greatest to smallest. To rank items as...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 300 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 340 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that...
A stove is connected to a stovepipe of length L=3m. When the wind blows, the pipe...
A stove is connected to a stovepipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 300 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that is...
The standing wave properties of an ear canal are often modelled as a tube with one...
The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of...
Please Ensure that part e) is completed The standing wave properties of an ear canal are...
Please Ensure that part e) is completed The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in...
The first frequency heard strongly above the fundamental for a pipe closed at one end is...
The first frequency heard strongly above the fundamental for a pipe closed at one end is the Group of answer choices 5th harmonic 4th harmonic 2nd harmonic 3rd harmonic Flag this Question You have a pendulum and a mass /spring system which both have the same period of 2 seconds. You take them both to the moon where the acceleration of gravity is only 1/6th as large ( 9.8/6 m/sec/sec ) Which one will have the longest period on the...
The D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8...
The D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8 Hz. The oscillating length of a D-string on a certain guitar is 0.63m. (a) What is the wavelength, in meters, of a standing wave in the D-string when it is oscillating at its third harmonic (also called its second overtone)? (b) Determine the frequency, in hertz, of the third harmonic of the tone produced by the properly tuned D-string. (c) The guitarist shortens the...
A large diameter closed top tank is filled with a depth of 3 meters of a...
A large diameter closed top tank is filled with a depth of 3 meters of a fluid (density 1200 kg/m3). A small pipe leading from the bottom of the tank must carry the fluid some height above the fluid level in the tank. a) If a pressure of 2.5 Atmospheres is maintained in the space above the fill line in the tank how high above the fill line can the pipe carry the fluid and still provide an exit speed...
⦁   A person sitting in a stationary boat notices that it takes the water waves 2...
⦁   A person sitting in a stationary boat notices that it takes the water waves 2 seconds to pass the entire length of the boat that is 12 m. Calculate the speed of the water waves. Show your calculation. 12/2 = 6m/s ⦁   The person in Question #1 also notices the water waves passing by the bow of the ship once every 4 seconds. b) What are the frequency and c) the wavelength of the water waves? Show all your...