Question

Four standing waves, labeled A through D, are described below: Wave A: first harmonic; pipe closed...

Four standing waves, labeled A through D, are described below:

Wave A: first harmonic; pipe closed at one end; length = 1 m

Wave B: first harmonic; pipe open at both ends; length = 1 m

Wave C: second harmonic; pipe open at both ends; length = 3 m

Wave D: second harmonic; pipe closed at one end; length = 3 m

Rank the standing waves in order of decreasing frequency. Rank from greatest to smallest. To rank items as equivalent, overlap them.

Homework Answers

Answer #1

Dear student,
Find this solution .if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.
If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.
Your rating is important to me.
Thanks for asking..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7). An organ pipe, closed at one end, is vibrating in its first overtone (second harmonic),...
7). An organ pipe, closed at one end, is vibrating in its first overtone (second harmonic), has length 61cm. A second organ pipe, open at both ends, is vibrating in its fundamental mode (first harmonic), has length 41cm. What are the frequencies of the tones from each?
The standing wave properties of an ear canal are often modelled as a tube with one...
The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of...
a) What are nodes and antinodes for a standing wave? b) How is the distance between...
a) What are nodes and antinodes for a standing wave? b) How is the distance between nodes related to the wavelength of a standing wave? c) How do standing waves look for a string? d) A pipe that is open at both ends? e) A pipe that is closed at one end and open at the other? please type your responses.
Please Ensure that part e) is completed The standing wave properties of an ear canal are...
Please Ensure that part e) is completed The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in...
Sound in Pipe Standing Wave A mode 4 standing wave has set up in a 60...
Sound in Pipe Standing Wave A mode 4 standing wave has set up in a 60 cm pipe that is open at both ends. The gas in and surrounding the pipe is air with sound velocity of 343 m/s. Determine the frequency of the standing wave in the pipe. The air in and surrounding the pipe is replaced by an unknown gas that results in a standing wave of the same frequency but with mode = 6. Determine the sound...
Standing sound waves are produced in a pipe that is 1.80 m long. If the pipe...
Standing sound waves are produced in a pipe that is 1.80 m long. If the pipe is closed at the left end and open at the right end , determine the locations along the pipe (measured from the left end) of the displacement nodes for the fundamental frequency. If there is more than one value, separate your answers with commas. x= m SubmitMy AnswersGive Up Incorrect; One attempt remaining; Try Again Part E If the pipe is closed at the...
a) Verbally describe how standing waves look for a string? A pipe that is open at...
a) Verbally describe how standing waves look for a string? A pipe that is open at both ends? A pipe that is closed at one end and open at the other? b) What produces the vibrations in various string instruments? c) How do the wavelength and frequency of a sound change if they are emitted by an object (such as an automobile) which is moving away from you? Towards you? Please type your responses for better legibility.
A sound wave resonance is formed in a pipe of length 2.33 m open at both...
A sound wave resonance is formed in a pipe of length 2.33 m open at both ends. Calculate the frquency of the 5 th harmonic. (The temperature is 40 C.) (1 point) 380.28 Hz 98.389 Hz 534.644 Hz 141.484 Hz 613.083 Hz A sound wave resonance is formed in a pipe of length 3.33 m open at one end closed at the other. Calculate the wavelength of the 4 th harmonic. (1 point) 3.524 m 1.903 m 2.63 m 0.982...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
A pipe of fixed length is closed at one end. What is (third harmonic frequency of...
A pipe of fixed length is closed at one end. What is (third harmonic frequency of pipe) / (first harmonic frequency of pipe)?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT