Question

The standing wave properties of an ear canal are often modelled as a tube with one...

The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.

a) What is the fundamental frequency?

b) Redraw the tube 3 times. Sketch in the standing wave patterns for the 2nd, 3rd and 5th harmonics.

c) What is the wavelength of the 5th harmonic?

d) What is the fundamental frequency if the ear was filled with water?

e) Consider a second tube that is open-open with length L2.

(i) Draw the standing wave pattern for the 3rd harmonic.

(ii) What is L2 so that the 3rd harmonic frequency equals the second harmonic frequency of the ear canal? (assume air-filled for both)

Homework Answers

Answer #1

Thanks!please rate it up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Please Ensure that part e) is completed The standing wave properties of an ear canal are...
Please Ensure that part e) is completed The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in...
1.The human ear canal is about 2.3 cm long. If it is regarded as a tube...
1.The human ear canal is about 2.3 cm long. If it is regarded as a tube open at one end and closed at the eardrum, what is the fundamental frequency around which we would expect hearing to be most sensitive? ?kHz 2. An airplane traveling at half the speed of sound emits a sound of frequency 5.30 kHz. (a) At what frequency does a stationary listener hear the sound as the plane approaches? ? kHz (b) At what frequency does...
The frequencies of two successive higher harmonics of a standing sound wave in a closed-closed tube...
The frequencies of two successive higher harmonics of a standing sound wave in a closed-closed tube is 450 Hz and 600 Hz. There are no other frequencies in between these two. What are the frequencies of the fundamental (1st harmonic) and the second harmonic of this tube? Draw the standing wave pattern (with respect to pressure variation) of the second harmonic. Mark the nodes and anti-nodes.
Four standing waves, labeled A through D, are described below: Wave A: first harmonic; pipe closed...
Four standing waves, labeled A through D, are described below: Wave A: first harmonic; pipe closed at one end; length = 1 m Wave B: first harmonic; pipe open at both ends; length = 1 m Wave C: second harmonic; pipe open at both ends; length = 3 m Wave D: second harmonic; pipe closed at one end; length = 3 m Rank the standing waves in order of decreasing frequency. Rank from greatest to smallest. To rank items as...
A stove is connected to a stovepipe of length L=3m. When the wind blows, the pipe...
A stove is connected to a stovepipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 300 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that is...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 300 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the...
A stove is connected to a stove pipe of length L=3m. When the wind blows, the pipe sometimes “sings” (just like blowing across the top of a coke bottle). The fundamental frequency and lowest few overtones are usually heard. Assume the speed of sound to be 340 m/s. a) Assume that the pipe is “open” on one end and “closed” on the other. Draw a displacement standing wave diagram for this case and determine the fundamental frequency of sound that...
7) (a) Draw a diagram to represent the standing wave patterns for the first three harmonics...
7) (a) Draw a diagram to represent the standing wave patterns for the first three harmonics of a pipe with one open end. (i) How many nodes and antinodes are there for each harmonic? (ii) What are the relations for the length of the rope L, the wavelength λ, and the frequency f of the standing waves?
for a string to form a standing wave, does the length of the string have to...
for a string to form a standing wave, does the length of the string have to be in a multiple of 1/2 lambda or 1/4 lambda? what about for a tube with one open and and one closed end and a tube with two open ends. why is this the case for each scenerio?
A tube which is open at one end and closed at the other end has a...
A tube which is open at one end and closed at the other end has a length of 0.25 m. assume the speed of sound in the tube and in the surrounding air 350 m/s. a. Make one drawing of the tube for each of the three resonances with the longest wavelengths possible for the tube (i.e. 3 drawings total). Label the wavelength on each drawing (or a fraction of the wavelength if a full wave is not present), the...