Question

A 370 kg piano slides 2.5 m down a 28° incline and is kept from accelerating...

A 370 kg piano slides 2.5 m down a 28° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline. Determine: (a) the force exerted by the man (b) The work done on the piano by the man, (c) the work done on the piano by the force of gravity and (d) the net work done on the piano. Ignore friction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 340kg piano slides 3.8 m down a 29 degrees incline and is kept from accelerating...
A 340kg piano slides 3.8 m down a 29 degrees incline and is kept from accelerating by a man who is pushing back on it parallel to the incline. The effective coefficient of kinetic friction is 0.30. Part A. Calculate the force exerted by the man in N. Part B. Calculate the work done by the man on the piano. Part C. Calculate the work done by the friction force. Part D. Calculate the work done by the force of...
A 290 kg piano slides 4.3 m down a 30 degree incline and is kept from...
A 290 kg piano slides 4.3 m down a 30 degree incline and is kept from accelerating by a man who is pushing back on it parallel to the incline. The effective coefficient of kinetic friction is 0.40. (a) Calculate the force exerted by the man (N). (b) Calculate the work done by the man on the piano. (J). (c) Calculate the work done by the friction force (J). (d) What is the work done by the force of gravity...
Starting from rest, a 2.97 kg block slides 2.44 m down a rough 39.4 ◦ incline....
Starting from rest, a 2.97 kg block slides 2.44 m down a rough 39.4 ◦ incline. The coefficient of kinetic friction between the block and the incline is 0.471. The acceleration of gravity is 9.8 m/s 2 . 1)Find the work done by the force of gravity. Answer in units of J. 2)Find the work done by the friction force between block and incline. Answer in units of J. 3)Find the work done by the normal force. Answer in units...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is ?k = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
Starting from rest, a 4.60-kg block slides 2.00 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.60-kg block slides 2.00 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient of kinetic friction between the block and the incline is ?k = 0.3 If the incline is 3 m long: 1. Determine the work done by friction 2. Determine the work done by the normal force 3. Determine the work done by gravity 4. What is the total work done on the block? 5. If the block is given an initial speed of 5...
A 5.0-kg package slides 4 m down the incline of a ramp sloped at 20˚. The...
A 5.0-kg package slides 4 m down the incline of a ramp sloped at 20˚. The coefficient of kinetic friction increases linearly along the surface of the ramp, from 0 at the top to 0.32 at the bottom. 1) Calculate the work done on the package by gravity. 2) Calculate the work done on the package by friction. 3) Calculate the work done on the package by the normal force. 4) If the package had a speed of 3.7 m/s...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined at an angle of 15.0° with the horizontal. Ignore air resistance. (a) Calculate the work done by gravity on the skier and the work done by the normal force on the skier. Work done by gravity? Work done by normal force? (b) If the slope is not frictionless so that the skier has a final velocity of 4 m/s, calculate the work done by...
A 20.0 kg box slides 1.60 m down a rooftop with a 30.0° incline and a...
A 20.0 kg box slides 1.60 m down a rooftop with a 30.0° incline and a coefficient of kinetic friction of 0.342. It then falls off the rooftop and hits the ground. Assume no air resistance. The bottom of the rooftop is 2.78 m above ground. What are the components of the weight, using axes parallel and perpendicular to the rooftop? Write the normal force and the force of friction in component form?
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the horizontal. The acceleration of gravity is 9.81 m/s2 . a) Find the work done by the gravitational force when the block slides 5.9 m (measured along the incline). b) What is the total work done on the block? c) What is the speed of the block after it has moved 5.9 m if it starts from rest? d) What is its speed after 5.9...