Question

A roc of length 1m and mass .45 kg pivot about a point located 35 cm...

A roc of length 1m and mass .45 kg pivot about a point located 35 cm from the end of the rod.Determine its period of oscillation for small amplitudes

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin rod of length ll swings at small amplitude with the pivot point at one...
A thin rod of length ll swings at small amplitude with the pivot point at one end, with a thick rod of length LL and radius RR attached on the other end. The thin rod has a mass mm = 0.14 kg, and the thick rod a mass of MM = 1.36 kg. The radius of the thick rod is 0.09 m. If ll = 0.86 m and LL = 0.06 m, what is the period of oscillation? Answer in...
A uniform thin stick of length L=3.00 m and mass m=2.00 kg is undergoing small oscillations...
A uniform thin stick of length L=3.00 m and mass m=2.00 kg is undergoing small oscillations about a pivot point x away from its center of mass. For the oscillation period to be the minimum possible value, what should be the value of x? Enter the value in meters.
A uniform thin stick of length L=2.25 m and mass m=1.75 kg is undergoing small oscillations...
A uniform thin stick of length L=2.25 m and mass m=1.75 kg is undergoing small oscillations about a pivot point x away from its center of mass. For the oscillation period to be the minimum possible value, what should be the value of x? Enter the value in meters.
A uniform meter stick swings about a pivot point which is a distance x = 35.2...
A uniform meter stick swings about a pivot point which is a distance x = 35.2 cm from the end of the stick. What is its period of oscillation?
Three point mass particles are located in a plane: 4.27 kg located at the origin, 7.8995...
Three point mass particles are located in a plane: 4.27 kg located at the origin, 7.8995 kg at [(5.77 cm),(11.54 cm)], and 2.23321 kg at [(12.117 cm),(0 cm)]. How far is the center of mass of the three particles from the origin? Answer in units of cm.
An irregularly shaped body of mass 2.44 kg is mounted on an axle located 29.6 cm...
An irregularly shaped body of mass 2.44 kg is mounted on an axle located 29.6 cm from the center of gravity of the body. The body oscillates as a pendulum with a period of 1.09 s and amplitude in angle of 0.120 radian. Assume that friction and air resistance are negligible. (a) The bodys total mechanical energy is ______ J. (b) The bodys biggest speed during the oscillation is ________m/s. (c) The bodys moment of inertia about the axis is...
The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm...
The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm and mass 470 g attached to a uniform rod with length L = 640 mm and mass 240 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and the center of mass of the pendulum? (c) Calculate the period of oscillation
A mass of 1.9 kg is located at the end of a very light and rigid...
A mass of 1.9 kg is located at the end of a very light and rigid rod 44 cm in length. The rod is rotating about an axis at its opposite end with a rotational velocity of 5 rad/s. (a) What is the rotational inertia of the system? (b) What is the angular momentum of the system?
Two children of mass 16 kg and 33 kg sit balanced on a seesaw with the...
Two children of mass 16 kg and 33 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw. If the children are separated by a distance of 4 m, at what distance from the pivot point is the small child sitting in order to maintain the balance?
1. A point mass of 3 kg is located at x = 0 m, y =...
1. A point mass of 3 kg is located at x = 0 m, y = -0.6 m, a point mass of 5 kg is located at x = 0 m, y = +0.7 m, and a point mass of 6 kg is located at x = 0.9 m, y = 0 m. What is the moment of inertia of these masses about the the x axis in kg m2? . 2. A point mass of 2 kg is located...