Question

A sphere of radius 10 m and a mass m1 = 5 kg is rolling without...

A sphere of radius 10 m and a mass m1 = 5 kg is rolling without slipping on a horizotal surface with a velocity V = 20 m/s to the East. It collides with a stationery sphere of mass m2 =15 kg. After the collision both masses rolls in different directions and m1 with a velocity V = 5 m/s.
1) Find the velocity of m2 after collision
2) Find the angular velocity of m2 after the collision
3) Was the collision elastic

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
.A uniform sphere of mass m radius r starts rolling down without slipping from the top...
.A uniform sphere of mass m radius r starts rolling down without slipping from the top of another larger sphere of radius R. Find the angular velocity of the sphere after it leaves the surface of the larger sphere.
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an...
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an elastic collision with the first ball traveling east with a velocity of $$m/s and the second ball traveling west with a velocity of 10 m/s. Find the speeds and the direction of the of the two balls after the collision . show all work to get to answer
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an...
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an elastic collision with the first ball traveling east with a velocity of 50m/s and the second ball traveling west with a velocity of 10 m/s. Find the speeds and the direction of the of the two balls after the collision . show all work to get to answer
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, ->vf ? (b) What is the center of mass velocity, ->v_CM? (c) What would this collision look like in the center-of-mass frame?
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the sphere has a translational speed of 4.0 m/s, the total kinetic energy of the sphere is 2. A solid sphere (I = 0.4MR2) of radius 0.0600 m and mass 0.500 kg rolls without slipping down an inclined plane of height 1.60 m . At the bottom of the plane, the linear velocity of the center of mass of the sphere is approximately _______ m/s.
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a ball of mass m2=0.800 kg that is initially at rest. No external forces act on the balls. a. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of 2.5 m/s makes an elastic collision with a cart of unknown mass m2 moving at an unknown speed toward m1 . After the collision, the 8.8 kg cart recoils with a speed of 9.2 m/s as shown in the figure but now m2 is at rest. Find the mass of m2.
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?