Question

A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...

A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.

Homework Answers

Answer #1

Here we apply concept of Newton's laws of motion and Newton's laws of rotation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hollow spherical shell with mass 2.35 kg rolls without slipping down a slope that makes...
A hollow spherical shell with mass 2.35 kg rolls without slipping down a slope that makes an angle of 35.0 ? with the horizontal. Find the magnitude of the acceleration acm of the center of mass of the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .Find the magnitude of the frictional force acting on the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up a ramp that rises at 30.0° above the horizontal. Speed of the ball at the base of the ramp is 8.20 m/s. Moment of inertia of 2 hollow sphere is given by I=(2/3)m r . (a) What is the angular velocity of the ball at the base of the ramp? (b) Determine how far up the ramp does it roll before it starts to...
A hollow cylinder (hoop) of mass M and radius R starts rolling without slipping (with negligible...
A hollow cylinder (hoop) of mass M and radius R starts rolling without slipping (with negligible initial speed) from the top of an inclined plane with angle theta. The cylinder is initially at a height h from the bottom of the inclined plane. The coefficient of friction is u. The moment of inertia of the hoop for the rolling motion described is I= mR^2. a) What is the magnitude of the net force and net torque acting on the hoop?...
A hollow sphere (spherical shell) is rolling down an incline. The incline has an angle theta,...
A hollow sphere (spherical shell) is rolling down an incline. The incline has an angle theta, the sphere has a radius of R, and mass M. Please calculate the acceleration of the sphere has it rolls down the hill.
A hollow sphere of radius 16cm and mass 10kg stars from rest and rolls without slipping...
A hollow sphere of radius 16cm and mass 10kg stars from rest and rolls without slipping a distance d=6.5m down a roof that is inclined at an angle of 36°. a. What is the angular speed of the hollow sphere about its center as it leaves the roof? b. The roof’s edge is at a height of 4.5m. How far horizontally from the roof’s edge does the hollow sphere hit the level ground?
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg starts with a purely translational speed of 1.25 m/s 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘ 29.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ? 2 v2 at the...
A solid sphere ( of mass 2.50 kg and radius 10.0 cm) starts rolling without slipping...
A solid sphere ( of mass 2.50 kg and radius 10.0 cm) starts rolling without slipping on an inclined plane (angle of inclination 30 deg). Find the speed of its center of mass when it has traveled down 2.00 m along with the inclination. Groups of choices: a. 3.13 m/s b. 4.43 m/s c. 3.74 m/s d. 6.26 m/s
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the sphere has a translational speed of 4.0 m/s, the total kinetic energy of the sphere is 2. A solid sphere (I = 0.4MR2) of radius 0.0600 m and mass 0.500 kg rolls without slipping down an inclined plane of height 1.60 m . At the bottom of the plane, the linear velocity of the center of mass of the sphere is approximately _______ m/s.
A hollow spherical shell with mass 2.45 kg rolls without slipping down a slope that makes...
A hollow spherical shell with mass 2.45 kg rolls without slipping down a slope that makes an angle of 30.0 degrees with the horizontal. Find the minimum coefficient of friction μ needed to prevent the spherical shell from slipping as it rolls down the slope.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT