Question

A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision.

(a) What is their common final velocity, ->vf ?

(b) What is the center of mass velocity, ->v_CM?

(c) What would this collision look like in the center-of-mass frame?

Answer #1

(A) This is an inelastic collision

m1v1 + m2v2 = ( m1 + m2) v

v = m1v1 + m2v2 / m1 + m2

v = 10 * 5 - 20 * 1 / 10 + 20

v = 1 m/s

-----------------------------------------------------------------------

(B) Center of Mass Has a Constant Velocity During an Inelastic Collision.

so,

v_{cm} = 1 m/s

------------------------------------------------------------

(C) The center of mass of the two object combination does not accelerate. As the collision is taking place, it doesn't alter the motion of the center of mass

A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to
the right and collides inelastically with an initially stationary
block of mass m2=18.0 kg. The two objects become stuck together.
Find the final velocity of the two blocks.
B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to
the right and collides elastically with an initially stationary
block of mass m2=18.0 kg.
After the collision, block m2 is moving to the right...

A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a
completely inelastic collision with a stationary block of mass m2 =
0.500 kg . The blocks then move, stuck together, at speed v2. After
a short time, the two-block system collides inelastically with a
third block, of mass m3 = 2.60 kg , which is initially at rest. The
three blocks then move, stuck together, with speed v3. Assume that
the blocks slide without...

Block 1, of mass m1 = 12.3 kg , moves along a frictionless air
track with speed v1 = 13.0 m/s . It collides with block 2, of mass
m2 = 39.0 kg , which was initially at rest. The blocks stick
together after the collision. Find the magnitude pi of the total
initial momentum of the two-block system. Find vf, the magnitude of
the final velocity of the two-block system. What is the change
ΔK=Kfinal−Kinitial in the two-block system's...

Block 1, of mass m1 = 1.70 kg , moves along a frictionless air
track with speed v1 = 29.0 m/s . It collides with block 2, of mass
m2 = 59.0 kg , which was initially at rest. The blocks stick
together after the collision. (Figure 1)
Find the magnitude pi of the total initial momentum of
the two-block system.
Find vf, the magnitude of the final velocity of the
two-block system.
What is the change ΔK=Kfinal−Kinitial
in the...

Block 1, of mass m1 = 5.30 kg , moves along a frictionless air
track with speed v1 = 31.0 m/s . It collides with block 2, of mass
m2 = 51.0 kg , which was initially at rest. The blocks stick
together after the collision.
A.Find the magnitude pi of the total initial momentum of the
two-block system.
B.Find vf, the magnitude of the final velocity of the two-block
system.
C. What is the change ΔK=Kfinal−Kinitial in the two-block...

A block moving with speed vo = 10 m/s and mass m1 = 6 kg
collides with a block of mass m2 = 5 kg initially at rest. (Both
slide on a frictionless surface at all times.) Now the two blocks
collide with a third block initially at rest. What is the final
momentum of the system?
Question options:
A) 30 kg-m/s B) 60 kg-m/s C) 190 kg-m/s D) 250 kg-m/s E) 310
kg-m/s

Block 1, of mass m1 = 9.70 kg , moves along a frictionless air
track with speed v1 = 27.0 m/s . It collides with block 2, of mass
m2 = 55.0 kg , which was initially at rest. The blocks stick
together after the collision. (Figure 1)
Part A: Find the magnitude pi of the total initial momentum of
the two-block system.
Part B: Find vf, the magnitude of the final velocity of the
two-block system.
Part C: What...

A car having mass M1= 1000 Kg moving
initially at V1i= 60 m/s collides with
a car having mass M2= 3000 Kg that was
moving initially at V2i = 20m/s. After
the inelastic collision, the cars stick and move together. The
final velocity of the two cars just after collision is
Vf =_______ m/s
Part A
40
20
60
30
Part B
If the collision time is t = 0.25 seconds, the
force exerted on the car having mass
M2= 3000...

Block 1, of mass m 1 =9.50 kg , moves along a frictionless air
track with speed v 1 =27.0 m/s . It collides with block 2 m2 =13.0
kg , which was initially at restThe blocks stick together after the
collision.
Find the Magnitude p1 of the total inital momentum of the two
block system.
Find vf, the magnitude of the final velocity of the two block
system.

A
6.0-kg block moving at 9.0 m/s to the right collides head-on with
another 12.0-kg block moving at 3.0 m/s to the left. What are the
velocities of the two blocks after the collision if the collision
is elastic?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 18 minutes ago

asked 42 minutes ago

asked 42 minutes ago

asked 52 minutes ago

asked 55 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago