Question

A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...

A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks.

B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg.

After the collision, block m2 is moving to the right with speed 2.5 m/s. Find the final velocity of block m1.

C) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg.

After the collision, block m1 is moving to the left with speed 2.5 m/s. Calculate the impulse (∆p) experienced by block m1.

Homework Answers

Answer #1

NOTE:- Dear student. feel Free to ask doubts in comment(give me a try before downvoting). Trust me ! I'll surely respond quickly and clear your doubt.

Hope you give positive rating.

THANKS . All the best.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m1 = 1.90 kg initially moving to the right with a speed...
A block of mass m1 = 1.90 kg initially moving to the right with a speed of 4.6 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.8 kg initially moving to the left with a speed of 1.1 m/s.The spring constant is 519 N/m. What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A block of mass m1 = 2.6 kg initially moving to the right with a speed...
A block of mass m1 = 2.6 kg initially moving to the right with a speed of 4.5 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 5.6 kg initially moving to the left with a speed of 2.9m/s. The spring constant is 504N/m. Now, What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides with a block of mass m2 = 5 kg initially at rest. (Both slide on a frictionless surface at all times.) Now the two blocks collide with a third block initially at rest. What is the final momentum of the system? Question options: A) 30 kg-m/s B) 60 kg-m/s C) 190 kg-m/s D) 250 kg-m/s E) 310 kg-m/s
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with...
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with a speed of 1.0 m/s has a head-on collision with cart 2 of mass m2 = 3.0-kg that is initially moving to the left with a speed of 1.0 m/s. After the collision, the cart 1 is moving to the left with a speed of 1.0 m/s. What is the final velocity of cart 2? part b) An object's velocity of +4.10 m/s changes...
A ball with a mass of 2 kg is initially moving to the right with a...
A ball with a mass of 2 kg is initially moving to the right with a speed of 3 m/s. It collides with a 5 kg ball moving to the left with a speed of 1 m/s. The balls collide partially elastically: 70% of the initial kinetic energy of the system is conserved in the collision. Find the final velocity of each ball. The balls move only along the x-axis. Show your work.
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially...
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo an elastic collision. Calculate their final velocities after the collision. 2. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo a perfectly inelastic collision. Calculate the final velocity after the collision and the kinetic-energy loss. 3. A moving mass,m1, collides perfectly inelastically with a stationary mass,m2. Show that the total kinetic energy...
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides...
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides with mass #2 of 10. kg that is initially at rest, on a frictionless horizontal surface. They collide elastically. Find each velocity, after the collision.
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to a spring constant k=64.0 N/m. The other end of the spring is connected to a wall, and the spring is initially at its equilibrium (unstretched) position. Block 1 with mass m1=10.0 is initially traveling with speed v1=4.0 m/s and collides with block 2. The collision is instantaneous, and the blocks stick together after the collision. Find the speed of the blocks immediately after the...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT