Question

A sound wave has a measured period of 2.5 ms and distance of 43 cm lying...

A sound wave has a measured period of 2.5 ms and distance of 43 cm lying between wave compressions and neighboring rarefactions.

a) Determine the speed of this wave.

b) If this wave passed from air into water, would its wavelength change? If so, how (increase or decrease) and why? If not, why not.

c)An observer measures a 450 Hz frequency for this sound wave. Assuming that the source is at rest, determine the observers speed.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sound wave of frequency f=300Hz produced by a moving source 40m/s is observed by a...
A sound wave of frequency f=300Hz produced by a moving source 40m/s is observed by a stationary observer. The speed of sound in ambient air is 345 m/s. As the source moves toward the observer, how far does the source travel between subsequent wave pulses? What is the apparent wavelength of the sound wave as perceived by the observer? What is the frequency of sound perceived by the observer? Note, when the source is in motion, the speed of the...
Please show all your work. A source of sound is located in a room a distance...
Please show all your work. A source of sound is located in a room a distance “L” from a wall. The room temperature is 72°F. AN observer is located between the source and the wall at 103 cm from the wall. The observer can hear a loud sound at the 3rd harmonic and the sound fades at the 4th harmonic. What is the velocity of sound in the room? What is the frequency at which the observer can hear the...
A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on...
A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on a 28.0 cm-long string. HINT (a) In which harmonic number n is the string vibrating? (b) Find the frequency (in Hz) of this harmonic if the string has a mass of 1.25 ✕ 10−2 kg and a tension of 885 N. Hz
1)Calculate the speed of the waves having a crest-to-crest distance of 150 cm and the time...
1)Calculate the speed of the waves having a crest-to-crest distance of 150 cm and the time taken to complete one cycle is 5 ms. 2)Given the following sound wave equation: s(x,t)= 150 sin(50x - 140t) dB a) The amplitude of the wave. b) the wave frequency and the periodic time c) the wavelength d) The time taken for the wave to reach the first   crest.
A stone is dropped from the top of a cliff. The splash it makes when striking...
A stone is dropped from the top of a cliff. The splash it makes when striking the water below is heard 3.2 s later. How high is the cliff? 2. The pressure variation is a sound wave is given by Δ P = 0.0035 sin (0.38 π x – 1350 π t) Determine a. the wavelength b. the frequency c. the speed and d. the displacement amplitude of the wave. Assume the density of the medium to be 2.2 x...
Open the Wave on a String PhET simulation. Set the following parameters: Simulation PAUSED Damping None...
Open the Wave on a String PhET simulation. Set the following parameters: Simulation PAUSED Damping None Tension High Rope’s End No End Source Oscillate Ruler Enabled Amplitude 0.5 cm Set the frequency of oscillation to 1.5 Hz. Run the simulation by clicking on the Play/Pause button. Measure the wavelength of the wave, using the ruler and the Play/Pause button. Repeat step 3 but increase the frequency to 3 Hz. Determine the wavelength of the wave. Summarize your data in Data...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked and is producing a note of frequency 334 Hz. (a) What is the speed of transverse traveling waves on this guitar string? Give your answer in m/s. HINT: The note you hear is produced by the vibrational mode of the string which has the fundamental (lowest possible) frequency. Draw a picture of the string vibrating in that mode and determine the wavelength of the...
An ultrasound machine in a hospital uses a sound source at 5.10000MHz. Assuming that the speed...
An ultrasound machine in a hospital uses a sound source at 5.10000MHz. Assuming that the speed of the ultrasound in the body is same as water (1440 m/s), determine the wavelength in the body. If blood cells are moving towards the sound source at a speed of 0.8 m/s, at what frequency do the crests of the sound wave pass through the blood cell? What is the frequency of the sound waves reflected back towards the source by the blood...
An ultrasound machine in a hospital uses a sound source at 19.00000MHz. [3 marks] Assuming that...
An ultrasound machine in a hospital uses a sound source at 19.00000MHz. [3 marks] Assuming that the speed of the ultrasound in the body is same as water (1440 m/s), determine the wavelength in the body. [6 marks] If blood cells are moving towards the sound source at a speed of 0.8 m/s, at what frequency do the crests of the sound wave pass through the blood cell? [5 marks] What is the frequency of the sound waves reflected back...
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are...
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are driven in phase with a sine wave signal of frequency 10 kHz. A small microphone is placed a distance 1.1 m away from the speakers on the axis running through the middle of the two speakers, and the microphone is then moved perpendicular to the axis. Where does the microphone record the first minimum of the interference pattern from the speakers as measured from...