A compound disk of outside diameter 130 cm is made up of a uniform solid disk of radius 35.0 cm and area density 5.10 g/cm2 surrounded by a concentric ring of inner radius 35.0 cm , outer radius 65.0 cm , and area density 2.30 g/cm2 .
A)Find the moment of inertia of this object about an axis perpendicular to the plane of the object and passing through its center.
for the uniform solid disk of radius 35 cm:
moment of inertia=0.5*mass*radius^2
mass=density*surface area=density*pi*radius^2
then moment of inertia=0.5*pi*density*radius^4
using density=5.1 g/cm^2 and radius=35 cm,
moment of inertia =I1=0.5*pi*5.1*35^4
=1.2022*10^7 gram.cm^2
for the other ring:
moment of inertia=0.5*mass*(outer radius^2-inner radius^2)
mass=density*pi*(outer radius^2-inner radius^2)
moment of inertia=I2=0.5*pi*density*(outer radius^2-inner radius^2)^2
using the values,
moment of inertia I2=0.5*pi*2.3*(65^2-35^2)^2
=3.2515*10^7 gram.cm^2
so total moment of inertia=I1+I2
=4.4537*10^7 gram.cm^2
Get Answers For Free
Most questions answered within 1 hours.