Question

A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2) (a) What is the magnitude...

A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2)

(a) What is the magnitude of the force on the electron?
(b) What is the magnitude of the force on the proton?
(c) What is the electric field of the proton at the electron position?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton and an electron are fixed in space with a separation of 947 nm. Calculate...
A proton and an electron are fixed in space with a separation of 947 nm. Calculate the electric potential at the midpoint between the two particles. Find the magnitude and direction of the electric field at the same point. Potential: _____V Magnitude of field: ______N/C Direction of field: (a) toward the proton (b) toward the electron (c) another direction (d) undetermined
A proton and an electron are fixed in space with a separation of 837 nm. Calculate...
A proton and an electron are fixed in space with a separation of 837 nm. Calculate the electric potential at the midpoint between the two particles. potential: V Find the magnitude of the electric field at the same point. magnitude of field: N/C The direction of field is toward the proton. toward the electron. another direction. undetermined.
An electron and a proton are fixed at a separation distance of 879 nm. Find the...
An electron and a proton are fixed at a separation distance of 879 nm. Find the magnitude  of the electric field at their midpoint.
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron...
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron of charge of -1.6x10-19 Coulomb, separated by 2x10-10[m] = 0.2[nm]. 1a. What’s the electrostatic force between the charges (magnitude and direction), and why? 1b. What’s the electric field magnitude and direction at a point halfway between the two charges, and why? 1c. How much energy (in electron Volts OR in Joules) is needed to separate these two charges?
A proton and an electron are moving due east in a constant electric field that also...
A proton and an electron are moving due east in a constant electric field that also points due east. The electric field has a magnitude of 8.0 × 104 N/C. Determine the magnitude of the acceleration of the proton and the electron.
Which of the following describes the potential energy, U, between an electron and proton separated by...
Which of the following describes the potential energy, U, between an electron and proton separated by a distance r. Keep in mind that k = 1/(4 x pi x epsilon_o) and the charge on an electron is -e and the charge on a proton is +e. 1) U=-ke^2/r 2) U=+ke^2/r 3) U=-ke^2/r^2 4) U=+ke^2/r^2
A laboratory electromagnet produces a magnetic field of magnitude 1.49 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.49 T. A proton moves through this field with a speed of 5.88 ✕ 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. ____N (b) What is the magnitude of the maximum acceleration of the proton? ____m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
A laboratory electromagnet produces a magnetic field of magnitude 1.39 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.39 T. A proton moves through this field with a speed of 6.16 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? Yes No Explain. (d) Would the...
A laboratory electromagnet produces a magnetic field of magnitude 1.44 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.44 T. A proton moves through this field with a speed of 5.98 ✕ 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
A laboratory electromagnet produces a magnetic field of magnitude 1.60 T. A proton moves through this...
A laboratory electromagnet produces a magnetic field of magnitude 1.60 T. A proton moves through this field with a speed of 6.12 ? 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. N (b) What is the magnitude of the maximum acceleration of the proton? m/s2 (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT