Question

The pulley in the following figure is a uniform disk with the radius 0.160 m and...

The pulley in the following figure is a uniform disk with the radius 0.160 m and the mass M=4kg. The rope does not slip on the pulley rim. Use energy methods to calculate the speed of the m2 = 9 kg block just before it strikes the floor.( m1= 2.00 kg, g=10m/s2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The pulley in the following figure is a uniform disk with the radius 0.160 m and...
The pulley in the following figure is a uniform disk with the radius 0.160 m and the mass M=4kg. The rope does not slip on the pulley rim. Use energy methods to calculate the speed of the m2 = 9 kg block just before it strikes the floor.( m1= 2.00 kg, g=10m/s2)
The pulley is a uniform cylinder with mass m3 = 0.400 kg and radius R= 4.00...
The pulley is a uniform cylinder with mass m3 = 0.400 kg and radius R= 4.00 cm, the other two masses are m1 = 2.00 kg and m2 = 1.00 kg, and α = 35.0 degrees. Assume the rope is massless, there is no slipping of the rope on the pulley, there is no friction between m1 and the incline, and the incline position is fixed. (a) What is the acceleration of m1 and m2 (both magnitude and direction)? What...
A 10 kg pulley with radius 1.0 m has an angular acceleration of 4.0 rad/s2 due...
A 10 kg pulley with radius 1.0 m has an angular acceleration of 4.0 rad/s2 due to a wooden block hanging from a rope wound around the pulley. What is the mass of the block (in kg)? Consider the pulley to be a uniform disk.
Two objects are connected to a rope, and the rope is hung over a pulley connected...
Two objects are connected to a rope, and the rope is hung over a pulley connected to the ceiling, as shown in the figure below. Two objects, labeled m1 and m2, are connected to a rope which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. An object labeled m1 hangs suspended off the surface on the left side of the pulley. An object m2 is on the right side of...
Two masses, mA = 32.0 kg and mB = 41.0 kg are connected by a rope...
Two masses, mA = 32.0 kg and mB = 41.0 kg are connected by a rope that hangs over a pulley (as in the figure(Figure 1)). The pulley is a uniform cylinder of radius R = 0.316 m and mass 3.4 kg . Initially, mA is on the ground and mB rests 2.5 m above the ground. a.If the system is now released, use conservation of energy to determine the speed of mB just before it strikes the ground. Assume...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope to a block with mass m2 = 0.845 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
A block with mass m1 hangs from a rope that is extended over an ideal pulley...
A block with mass m1 hangs from a rope that is extended over an ideal pulley and attached to a second block with mass m2 that sits on a ledge. The second block is also connected to a third block with mass m3 by a second rope that hangs over a second ideal pulley as shown in the figure below. If the friction between the ledge and the second block is negligible, m1 = 2.60 kg, m2 = 4.00 kg,...
Consider the following situation as pictured in the figure. A block slides on a friction-less table...
Consider the following situation as pictured in the figure. A block slides on a friction-less table dragged by a rope that goes over a pulley and from which a weight is hanged. The pulley can be considered a disk. Its mass is 5 Kg, and its radius is 1 m. The block has a mass of 2 Kg and the hanging weight has a mass of 1 Kg. m1=2Kg m2=1Kg A. First write the free body diagram for each mass...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the sliding block has a mass of m2 = 0.900 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...
A 170-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m...
A 170-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.600 rev/s in 2.00 s? (State the magnitude of the force.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT