Question

The equilibirum constant (k) for an amino acid acting as an acid-base pair in solution is:...

The equilibirum constant (k) for an amino acid acting as an acid-base pair in solution is:

AA + H2O <--------> H3O+ + AA- k = 9.03 E -5

Calculate the absorbance at 433 nm for the solution if the initial AA concentration of 4E-4 M, given that ɛAA = 9.04 E3 M and ɛAA- = 0.855 E3 M

Homework Answers

Answer #1

Here, absorbance   = e * L * c

where, e = molar extinction coefficient

            L = path length of the cell holder

            c = concentration of the solution

=>   absorbance   =   9.03 * 10-5 * 433 * 10-9 * 4 * 10-4

                            = 1.564 * 10-14

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution of a weak acid HA has initial concentration c and acid ionization constant Ka....
A solution of a weak acid HA has initial concentration c and acid ionization constant Ka. To what concentration should the acid be diluted to make [H3O+] half of what it was? Answer in terms of c and Ka.
An acid-base indicator, HIn, dissociates according to the following reaction in an aqueous solution. HIn---> In-...
An acid-base indicator, HIn, dissociates according to the following reaction in an aqueous solution. HIn---> In- + H+ . The protonated form of the indicator, HIn, has a molar absorptivity of 3827 M–1·cm–1 and the deprotonated form, In–, has a molar absorptivity of 26210 M–1·cm–1 at 440 nm. The pH of a solution containing a mixture of HIn and In– is adjusted to 5.92. The total concentration of HIn and In– is 0.000117 M. The absorbance of this solution was...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of H3O+ in the solution if the initial concentration of C6H5COOH is 6.6×10−2 M . Express your answer using two significant figures. [H3O+] =   M   SubmitRequest Answer Part B Calculate the equilibrium concentration of C6H5COO− in the solution if the initial concentration of C6H5COOH is 6.6×10−2 M . Express your answer using two significant figures. [C6H5COO−] =   M   SubmitRequest Answer Part C Calculate the equilibrium...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of H3O+ in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Express your answer using two significant figures. Part B Calculate the equilibrium concentration of C6H5COO− in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Part C Calculate the equilibrium concentration of C6H5COOH in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Express...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of...
The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Part A Calculate the equilibrium concentration of H3O+ in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Express your answer using two significant figures. Part B Calculate the equilibrium concentration of C6H5COO− in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Part C Calculate the equilibrium concentration of C6H5COOH in the solution if the initial concentration of C6H5COOH is 6.3×10−2 M . Express...
The acid-dissociation constant for benzoic acid ( C 6 H 5 COOH) is 6.3× 10 −5...
The acid-dissociation constant for benzoic acid ( C 6 H 5 COOH) is 6.3× 10 −5 . Part A Calculate the equilibrium concentration of H3O+ in the solution if the initial concentration of C6H5COOH is 5.7×10−2 M . Express your answer using two significant figures. Part B Calculate the equilibrium concentration of C6H5COO− in the solution if the initial concentration of C6H5COOH is 5.7×10−2 M . Express your answer using two significant figures. Part C Calculate the equilibrium concentration of...
The following equilibrium is established when 0.0120 M benzoic acid (C 6H 5COOH) is dissolved in...
The following equilibrium is established when 0.0120 M benzoic acid (C 6H 5COOH) is dissolved in water. C 6H 5COOH + H 2O ⇌ C 6H 5COO - + H 3O + K a = 6.3 x 10 -5 Which statement is false? a. Hydroxide ion concentration is negligible with respect to hydrogen ion concentration. b. C6H5COOH is a weak acid. c. H2O is a weak base. d. C6H5COO- is the conjugate acid of benzoic acid. e. H3O+ is the...
The degree to which a weak base dissociates is given by the base-ionization constant, Kb. For...
The degree to which a weak base dissociates is given by the base-ionization constant, Kb. For the generic weak base, B B(aq)+H2O(l)⇌BH+(aq)+OH−(aq) this constant is given by Kb=[BH+][OH−]/[B] Strong bases will have a higher Kb value. Similarly, strong bases will have a higher percent ionization value. Percent ionization=[OH−] equilibrium/[B] initial×100% Strong bases, for which Kb is very large, ionize completely (100%). For weak bases, the percent ionization changes with concentration. The more dilute the solution, the greater the percent ionization....
Learning Goal: To understand the relation between the strength of an acid or a base and...
Learning Goal: To understand the relation between the strength of an acid or a base and its pKa and pKb values. The degree to which a weak acid dissociates in solution is given by its acid-ionization constant, Ka. For the generic weak acid, HA, HA(aq)⇌A−(aq)+H+(aq) and the acid-ionization constant is given by Ka=[A−][H+][HA] Similarly, the degree to which a weak base reacts with H2O in solution is given by its base-ionization constant, Kb. For the generic weak base, B, B(aq)+H2O(l)⇌BH+(aq)+OH−(aq)...
Constant-boiling HCl can be used as a primary standard for acid-base titrations. A 50.00 mL sample...
Constant-boiling HCl can be used as a primary standard for acid-base titrations. A 50.00 mL sample of constant-boiling HCl with a concentration of 0.1251 M was collected and titrated to an end point with 33.37 mL of Ba(OH)2 solution. What is the molarity of the Ba(OH)2 solution?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT