Question

1. An insulated container holds 0.282 kg of water at 22.5C. What is the final equilibrium...

1. An insulated container holds 0.282 kg of water at 22.5C. What is the final equilibrium temperature after a 0.153 kg block of tin at 90.1C is placed in the water? Assume no energy is exchanged with container.

2. How much heat is neccessary to convert 85.0g of water at 100C to 47.0g of water and 38.0 g of steam at 100C?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Styrofoam cup holds 0.297 kg of water at 23.5°C. Find the final equilibrium temperature (in...
A Styrofoam cup holds 0.297 kg of water at 23.5°C. Find the final equilibrium temperature (in degrees Celsius) after a 0.153 kg block of aluminum at 85.1°C is placed in the water. Neglect any thermal energy transfer with the Styrofoam cup. The specific heats of water and aluminum are cwater = 4186 J (kg · °C) and cAl = 900 J (kg · °C) . °C
(a) An insulated container holds 2.0 kg of water at 303 K. You add 0.15 kg...
(a) An insulated container holds 2.0 kg of water at 303 K. You add 0.15 kg of ice at 273 K. When the mixture comes to equilibrium, what is its final temperature? cwater = 4186 J/kg K Lfusion ice/water = 3.34 x 105 J/kg (b) An insulated container holds 2.0 kg of water at 303 K. You add a piece of copper with mass 0.10 kg. The combination comes to a final temperature of 307 K. What was the original...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at 40∘C. A 200-g iron block at 0∘C is added to the water. Assume the specific heat of iron is 450 J/kg⋅∘C, the specific heat of water 4180 J/kg⋅∘C and the specific heat of aluminum is 900 J/kg⋅∘C . 1Determine the final equilibrium temperature.    2.Determine the change in thermal energy of the aluminum 3.Determine the change in thermal energy of the water. 4. Determine...
A block of tin with a mass of 1.70 kg, initially at a temperature of 150.0°C,...
A block of tin with a mass of 1.70 kg, initially at a temperature of 150.0°C, is in a well-insulated container. Water at a temperature of 26.0°C is added to the container, and the entire interior of the container is allowed to come to thermal equilibrium, where it reaches a final temperature of 61.0°C. What mass of water (in kg) was added? Assume any water turned to steam subsequently recondenses.
To make steam, you add thermal energy Q to some water in an insulated container. The...
To make steam, you add thermal energy Q to some water in an insulated container. The water is initially at a room temperature T, and it has specific heat c and latent heat of vaporization L. At the final temperature T_f, half of the water has turned to steam. What is the total mass m of the steam and water?
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100...
Some stainless steel implements, in a well insulated container, are brought into thermal equilibrium with 100 g of steam (water vapour). Initially the steam was at a temperature of 1000C and the implements were at a temperature of 10oC. Lv (water) = 2256 kJ kg-1; Cwater = 4.19 kJ kg-1 K-1; C stainless-steel = 0.9 kJ kg-1 K-1 Question: Which ONE of the following statements transforming 100 g of steam at 1000C into 100 g of water at 1000C is...
An 890-g iron block is heated to 370 ∘C and placed in an insulated container (of...
An 890-g iron block is heated to 370 ∘C and placed in an insulated container (of negligible heat capacity) containing 35.0 g of water at 20.0 ∘C. What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kg⋅K). Answer in ∘C. I have already tried 109 ∘C and 110 ∘C, so I don't know what I'm doing wrong. :(
A) Suppose 0.395 kg of water initially at 41.5°C is poured into a 0.300 kg glass...
A) Suppose 0.395 kg of water initially at 41.5°C is poured into a 0.300 kg glass beaker having a temperature of 25.0°C. A 0.500 kg block of aluminum at 37.0°C is placed in the water, and the system insulated. Calculate the final equilibrium temperature of the system. °C B) A 21.5 kg gold bar at 27.0°C is placed in a large, insulated 0.800 kg glass container at 15.0°C with 2.00 kg of water at 25.0°C. Calculate the final equilibrium temperature....
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample...
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample of copper weighing 11.0 g is placed in a dry test tube and heated for 30 minutes in a boiling water bath at 100.0°C. The heated test tube is carefully removed from the water bath with laboratory tongs and inclined so that the copper slides into the water in the insulated container. Given that the specific heat of solid copper is 0.385 J/(g·°C), calculate...
You have 1.30 kg of water at 27.6 Degree Celsius in an insulated container of negligible...
You have 1.30 kg of water at 27.6 Degree Celsius in an insulated container of negligible mass. You add 0.580 kg of ice that is initially at -21.0 Degree Celsius. Assume no heat is lost to the surroundings and the mixture eventually reaches thermal equilibrium. If all of the ice has melted, What is the final temperature (in Degree Celsius, round to 2 decimal places) of the water in the container? Otherwise if some ice remains, what is the mass...