Question

A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 22.0 ∘C....

A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 22.0 ∘C. A 5.40×10−2-kg ice cube at -10.0 ∘C is placed in the lemonade.

What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings.

Homework Answers

Answer #1

plz like

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 25.0 ∘C∘C....
A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 25.0 ∘C∘C. A 5.90×10−2-kg ice cube at -12.0 ∘C is placed in the lemonade. What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings.
A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 25.0 ∘C....
A large punch bowl holds 3.70 kg of lemonade (which is essentially water) at 25.0 ∘C. A 6.00×10−2-kg ice cube at -11.0 ∘C is placed in the lemonade. What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings. What is the amount of ice (if any) remaining?
A large punch bowl holds 3.80 kg of lemonade (which is essentially water) at 22.0 ∘C....
A large punch bowl holds 3.80 kg of lemonade (which is essentially water) at 22.0 ∘C. A 6.00×10−2-kg ice cube at -15.0 ∘C is placed in the lemonade. What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings. Give your answer in degrees C.
A large punch bowl holds 3.50 kgkg of lemonade (which is essentially water) at 22.0 ∘C∘C....
A large punch bowl holds 3.50 kgkg of lemonade (which is essentially water) at 22.0 ∘C∘C. A 5.10×10−2-kgkg ice cube at -10.0 ∘C∘C is placed in the lemonade. What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings. What is the amount of ice (if any) remaining?
A large punch bowl holds 3.25 kg of lemonade (which is essentially water) at 20.0° C....
A large punch bowl holds 3.25 kg of lemonade (which is essentially water) at 20.0° C. A 1.90-kg ice cube at −10.2°C is placed in the lemonade. What is the final temperature of the system, and the amount of ice (if any) remaining? Ignore any heat exchange with the bowl or the surroundings.
A large punch bowl holds 3.90 kg of lemonade (which is essentially water) at 25.0 ∘C....
A large punch bowl holds 3.90 kg of lemonade (which is essentially water) at 25.0 ∘C. A 5.90×10−2-kg ice cube at -11.0 ∘C is placed in the lemonade. 1. What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings. 2.What is the amount of ice (if any) remaining?
A large punch bowl holds 3.30 kg of lemonade (which is essentially water) at 25.0 ∘C....
A large punch bowl holds 3.30 kg of lemonade (which is essentially water) at 25.0 ∘C. A 5.50×10^(−2) kg ice cube at -13.0 ∘C is placed in the lemonade. a.What is the final temperature of the system? Ignore any heat exchange with the bowl or the surroundings. Answer in degree C b.What is the amount of ice (if any) remaining? Answer in kg
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0
A large punch bowl holds 3.95 kg of lemonade (which is essentially water) at 20.0
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot...
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot 430 g copper cylinder is dropped into the water, causing the water to boil, with 6.44 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...