Question

Two waves y1 = 12 sin (16x + 96t) and y2 = - 12 sin (16x...

Two waves y1 = 12 sin (16x + 96t) and y2 = - 12 sin (16x – 96t) meet in space.

1. Find the resultant wave, using sum-to-product formula, y = y1 + y2 = ?

2. Find the positions where you get nodes.

3. Find the positions where you get antinodes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two waves are described by y1 = 0.21 sin[?(9x - 190t)] and y2 = 0.21 sin[?(9x...
Two waves are described by y1 = 0.21 sin[?(9x - 190t)] and y2 = 0.21 sin[?(9x - 190t) + ?/4], where y1, y2, and x are in meters and t is in seconds. When these two waves are combined, a traveling wave is produced. What are the (a) amplitude, (b) wave speed, and (c) wavelength of that traveling wave?
Two waves are described by y1 = 0.24 sin[π(3x - 180t)] and y2 = 0.24 sin[π(3x...
Two waves are described by y1 = 0.24 sin[π(3x - 180t)] and y2 = 0.24 sin[π(3x - 180t) + π/4], where y1, y2, and x are in meters and t is in seconds. When these two waves are combined, a traveling wave is produced. What are the (a) amplitude, (b) wave speed, and (c) wavelength of that traveling wave?
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t)...
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t) and y2 = (6 cm) sin (5x +1.6t+π/2). Find the superposition of waves and name of the resultant wave. Also determine the wave speed, amplitude of the reusltant wave.
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2...
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2 = (5.75 mm) sin(2.17πx - 440πt + 0.754πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.45 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2 = (5.61 mm) sin(2.23πx - 380πt + 0.861πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.21 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (4.14 mm) sin(2.31πx - 430πt) y2...
These two waves travel along the same string: y1 = (4.14 mm) sin(2.31πx - 430πt) y2 = (5.79 mm) sin(2.31πx - 430πt + 0.771πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.24 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (3.73 mm) sin(1.60πx - 340πt) y2...
These two waves travel along the same string: y1 = (3.73 mm) sin(1.60πx - 340πt) y2 = (5.39 mm) sin(1.60πx - 340πt + 0.867πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 4.89 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2 = (5.81 mm) sin(2.24πx - 320πt + 0.800π rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 4.93 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the...
Two transverse sinusoidal waves combining in a medium are described by the wave functions y1 =...
Two transverse sinusoidal waves combining in a medium are described by the wave functions y1 = 1.00 sin π(x + 0.500t) y2 = 1.00 sin π(x − 0.500t) where x, y1, and y2 are in centimeters and t is in seconds. Determine the maximum transverse position of an element of the medium at the following positions. (a) x = 0.130 cm |ymax| = ? (b) x = 0.460 cm |ymax| = ? (d) Find the three smallest values of x...
Two waves, y1(x,t) and y2(x,t), travel on the same piece of rope and combine to produce...
Two waves, y1(x,t) and y2(x,t), travel on the same piece of rope and combine to produce a resultant wave of the form y(x,t) = 8.000 sin(4.000x + 1.000t + 0)cos(1.000x + 3.000t + 0). The first wave is y1(x, t ) = 4.000 sin(3.000x + (-2.000)t), while the second wave has the form y2(x, t ) = A sin(kx ± ωt+ϕ), where x is measured in m and t in seconds. Determine the values of the constants in the second...