Question

These two waves travel along the same string: y1 = (4.14 mm) sin(2.31πx - 430πt) y2...

These two waves travel along the same string:

y1 = (4.14 mm) sin(2.31πx - 430πt)
y2 = (5.79 mm) sin(2.31πx - 430πt + 0.771πrad).

What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.24 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude of the new resultant wave?

Homework Answers

Answer #1

y = y1 + y2

y = 4.14 sin(2.31πx - 430πt) + (5.79 mm) sin(2.31πx - 430πt + 0.771πrad)


y = 4.14*sin(2.31πx - 430πt) + (5.79 mm) sin(2.31πx - 430πt )*cos0.771π + (5.79 mm) cos(2.31πx - 430πt )*sin0.771π

y = sin(2.31πx - 430πt)*[4.14 + (5.79 *cos0.771π) ] + cos(2.31πx - 430πt )* (5.79*sin0.771π )


R*costheta = 4.14 + (5.79 *cos0.771π)

R*sintheta = (5.79*sin0.771π )

y12 = R*sin(2.31πx - 430πt+theta)

R = sqrt(4.14^2+5.79^2+(2*4.14*5.79*cos(0.771pi))


R = 3.821 mm

+++++++++++++++++++++++++


phase angle = tan^-1((5.79*sin0.771π )/(4.14 + (5.79 *cos0.771π)))

phase angle = -1.514 rad

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2...
These two waves travel along the same string: y1 = (4.37 mm) sin(2.17πx - 440πt) y2 = (5.75 mm) sin(2.17πx - 440πt + 0.754πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.45 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2...
These two waves travel along the same string: y1 = (3.59 mm) sin(2.23πx - 380πt) y2 = (5.61 mm) sin(2.23πx - 380πt + 0.861πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.21 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (3.73 mm) sin(1.60πx - 340πt) y2...
These two waves travel along the same string: y1 = (3.73 mm) sin(1.60πx - 340πt) y2 = (5.39 mm) sin(1.60πx - 340πt + 0.867πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 4.89 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2...
These two waves travel along the same string: y1 = (4.57 mm) sin(2.24πx - 320πt) y2 = (5.81 mm) sin(2.24πx - 320πt + 0.800π rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 4.93 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the...
These two waves travel along the same string: y1 = (4.17 mm) sin(2.24?x - 300?t), y2...
These two waves travel along the same string: y1 = (4.17 mm) sin(2.24?x - 300?t), y2 = (5.96 mm) sin(2.24?x - 300?t + 0.727?rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.20 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...
Four waves are to be sent along the same string, in the same direction y1(x,t) =...
Four waves are to be sent along the same string, in the same direction y1(x,t) = (2 mm) sin(2px – 200pt) y2(x,t) = (2 mm) sin(2px – 200pt + 0.7p) y3(x,t) = (2 mm) sin(2px – 200pt + p) y4(x,t) = (2 mm) sin(2px – 200pt + 3.7p) (a) For y1, what is the (a) frequency, (b) wavelength and (c) speed? When these waves are all added together, what is the (d) amplitude of the resultant wave?
Two sinusoidal waves of the same frequency are to be sent in the same direction along...
Two sinusoidal waves of the same frequency are to be sent in the same direction along a taut string. One wave has an amplitude of 6.7 mm, the other 10.2 mm. (a) What phase difference φ1 between the two waves results in the smallest amplitude of the resultant wave? (b) What is that smallest amplitude? (c) What phase difference φ2 results in the largest amplitude of the resultant wave? (d) What is that largest amplitude? (e) What is the resultant...
Two sinusoidal waves of the same frequency are to be sent in the same direction along...
Two sinusoidal waves of the same frequency are to be sent in the same direction along a taut string. One wave has an amplitude of 6.2 mm, the other 8.5 mm. (a) What phase difference φ1 between the two waves results in the smallest amplitude of the resultant wave? (b) What is that smallest amplitude? (c) What phase difference φ2 results in the largest amplitude of the resultant wave? (d) What is that largest amplitude? (e) What is the resultant...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing a net wave y´(x, t) = (1.90 mm) sin(22.0x - 6.80t + 0.940 rad), with x in meters and t in seconds. What are (a) the wavelength λ of the two waves, (b) the phase difference between them, and (c) their amplitude ym?
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t)...
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t) and y2 = (6 cm) sin (5x +1.6t+π/2). Find the superposition of waves and name of the resultant wave. Also determine the wave speed, amplitude of the reusltant wave.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT