Two transverse sinusoidal waves combining in a medium are described by the wave functions y1 = 1.00 sin π(x + 0.500t) y2 = 1.00 sin π(x − 0.500t) where x, y1, and y2 are in centimeters and t is in seconds. Determine the maximum transverse position of an element of the medium at the following positions. (a) x = 0.130 cm |ymax| = ? (b) x = 0.460 cm |ymax| = ? (d) Find the three smallest values of x corresponding to antinodes. (Enter your answers from smallest to largest.) ?cm ?cm ?cm
The resultant wavefunction will be
y = y1 + y2
y = 1.00 sin π(x + 0.500t) + 1.00 sin π(x − 0.500t)
y = 1 (sin(πx) cos(0.5π t) + cos(πx) sin(0.5π t) ) + 1 (sin(πx) cos(0.5π t) - cos(πx) sin(0.5π t) )
y = 2 sin(πx) cos(0.5π t)
Maximum y for any position x will when cos(0.5π t) is maximum and maximum value of cos(0.5π t) is 1
ymax = 2 sin(πx)
a)x = 0.13 cm
ymax = 2 sin(π X 0.13)
ymax = 0.79 cm
b) x = 0.46 cm
ymax = 2 sin(π X 0.46)
ymax = 1.98 cm
c) Antinodes are points where amplitude is maximum so sin(πx) must be maximum i.e 1
sin(πx) = +- 1
x = 0.5 cm
x = 1.5 cm
x = 2.5 cm
Get Answers For Free
Most questions answered within 1 hours.