Question

1. If the buoyant force of an object is 300 N, and it displaces a volume...

1. If the buoyant force of an object is 300 N, and it displaces a volume of 14 m3, find the density

of the fluid.

a) 21.43 kg/m3

b) 30.61 kg/m3

c)2.18 kg/m3

d) 5.16 kg/m3

2. Find the frequency of an object that gives of an energy of 3.2x10-33J.

a) 2.12x10-66 Hz

b) 6.2x107 Hz

c) 4.8 Hz

d) 1.07x10-41 Hz

3. You observe a blue star that emits a wavelength of λ = 483 nm. Find the temperature of the star.

a) 12,500 K

b) 6004 K

c) 13,000 K

d) 5800 K

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.)The Buoyant Force from a fluid to an object depends on which of the following factors?...
1.)The Buoyant Force from a fluid to an object depends on which of the following factors? a.)The volume of the object b.)The volume of the fluid c.)The density of the fluid d.)The density of the object 2.)Why did the Titanic sink after it hit an iceberg and water rushed into the hull through the hole created by the collision? a.)The density of water has increased b.)The density of the boat increased c.)The mass of the boat has decreased d.)The volume...
In addition to the buoyant force, an object moving in a liquid experiences a linear drag...
In addition to the buoyant force, an object moving in a liquid experiences a linear drag force Fdrag = (bv, direction opposite the motion), where b is a constant. For a sphere of radius R, the drag constant can be shown to be b = 6πηR, where η is the viscosity of the liquid. Consider a sphere of radius R and density ρ that is released from rest at the surface of a liquid with density ρf. a. Find an...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2
1. A person pushes on a doorknob with a force of 5.00 N perpendicular to the...
1. A person pushes on a doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is located 0.800 m from the axis of the hinges of the door. The door begins to rotate with an angular acceleration of 2.00 rad/s2. What is the moment of inertia of the door about hinges? Select one: a. 6.50 kg.m2 b. 2.50 kg.m2 c. 12.5 kg.m2 d. 2.00 kg.m2 2. A dumbbell has a connecting bar of...