Question

A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...

A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.2 cm. the maximum value of its speed is 54.6 WHAT IS THE MAXIMUM VALUE OF IT'S ACCELERATION? QUESTION 2 A 45.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. the total energy of the system is 98 the speed of...
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates...
A 0.450 kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.0 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value (magnitude) of its speed and acceleration. ___cm/s ___cm/s2 (b) Calculate the speed and acceleration when the object is 9.00 cm from the equilibrium position. ___cm/s ___cm/s2 (c) Calculate the time interval required for the object...
A 0.580-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.580-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 13.0 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 11.00 cm from the equilibrium position. cm/s (d) Calculate the value of...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.6 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 10.60 cm from the equilibrium position. cm/s (d) Calculate the value of...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.560-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 11.4 cm. (Assume the position of the object is at the origin at t = 0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration. cm/s2 (c) Calculate the value of its speed when the object is 9.40 cm from the equilibrium position. cm/s (d) Calculate the value of...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 1-kg object is attached to a spring of force constant k = 0.5 kN/m. The...
A 1-kg object is attached to a spring of force constant k = 0.5 kN/m. The spring is stretched 10 cm from equilibrium and released. What is the kinetic energy of the mass–spring system when the mass is 5.0 cm from its equilibrium position? Group of answer choices 2.95 J 2.32 J 3.48 J 2.71 J 1.88 J