Question

Sirius B is a white star that has a surface temperature (in kelvins) that is four...

Sirius B is a white star that has a surface temperature (in kelvins) that is four times that of our sun. Sirius B radiates only 0.040 times the power radiated by the sun. Our sun has a radius of 6.96 × 108 m. Assuming that Sirius B has the same emissivity as the sun, find the radius of Sirius B.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A distant star is found to have twice the surface temperature as our sun Tstar= 2Tsun....
A distant star is found to have twice the surface temperature as our sun Tstar= 2Tsun. However, the total power emitted from that star’s surface is found to be four times the power emitted from our sun’s surface. (a) how do you think we know the surface temperature of that star without ever visiting it?(1 point) (b) What can you tell about the radius Rstar of that star compared to the radius Rsun of our sun?(2 points) Rstar/Rsun=
1. The surface of the the Sun has a temperature of about 5800K. The radius of...
1. The surface of the the Sun has a temperature of about 5800K. The radius of the Sun is 6.96 x 10^8 m. Calculate the total energy radiated by the Sun each second. Assume that the emissivity of the SUn is 0.986 2. Equal masses of substance A at 90.1C and substance B at 14.2C are palced in a well-insulated container of negligible mass and allowed to come to equilibrium. If the equilibrium temperature is 78.4C, which substance has the...
a star like our un will eventually evolve into a giant red star and then a...
a star like our un will eventually evolve into a giant red star and then a white dwarf star. A typical white dwarf is about the size of the earth and its surface temperature is about 2.5 x10 ^ 4K. A typical red giant has a surface temperature of 3.0x10 ^ 3K and a radius 100,000 times larger than that of a white dwarf. What is the average radiated power per unit area and the total power radiated by each...
A star with a radius four times that of our Sun is observed to have a...
A star with a radius four times that of our Sun is observed to have a rough blackbody spectrum that peaks around 400nm. The star illuminates a planet with the mass of the Earth at a distance of 0.7AU. This planet has a radius twice that of the Earth and absorbs a power of 2.82*1019 W. a) What is the planet’s albedo? The constant in Wien’s law is 2.9*10-3 m x K b) Assuming the equilibrium temperature is approximately that...
The star Sirius has a parallax angle of 0.379 arcseconds and its brightness is 8.8 x...
The star Sirius has a parallax angle of 0.379 arcseconds and its brightness is 8.8 x 10^-11 that of the Sun (b Sirius=8.8 x 10^-11bSun). The wavelength of maximum emission of Sirius is 241.7 nm. a) What is Sirius luminosity in terms of solar luminosity? b) And what is Sirius luminosity in Watts? (Assume that the Sun's luminosity is 3.8 x 10^26W) c) What is Sirius surface temperature? d) Use the information above to compute Sirius radius.
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for...
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for the star it orbits (Kepler 1606, a star about 3000 light-years away), it was discovered in the year 2016 by the Kepler space telescope. Kepler 1606b orbits its star a little bit closer than the Earth's orbit to the Sun, at a distance of 0.64⋅?????ℎ, where ?????ℎ=1.50×1011 m is the radius of Earth's orbit. The star Kepler 1606 is bit cooler than our Sun,...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108 m) is rotating with a period of 25 days. The star first blows off its outer layers and loses mass and angular momentum before the actual collapse, thereby reducing its radius while maintaining the same density. Then, with a mass that is 59 % of the Sun’s mass, it collapses to a white dwarf with a rotation period is 131 s. A) What is...
The sun is a main sequence G5 type star with a surface temperature TMS = 5800...
The sun is a main sequence G5 type star with a surface temperature TMS = 5800 K. When the sun exhausts its Hydrogen supply it will evolve into a red giant with a surface temperature TRG = 3000 K and a radius of 100 times its present value. What is the peak wavelength of the sun in its main sequence and red giant phases? How many times larger will the sun’s radiative power be in the red giant phase? Assume...
In an X-ray burster, the surface of a neutron star 10 km in radius is heated...
In an X-ray burster, the surface of a neutron star 10 km in radius is heated to a temperature of 3 × 107 K. (a) Determine the wavelength of maximum emission of the heated surface, assuming it radiates as a blackbody. In what part of the electromagnetic spectrum does this lie? (b) Find the luminosity of the heated neutron star. Give your answer in watts and in terms of the luminosity of the Sun. How does this compare with the...
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for...
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for the star it orbits (Kepler 1606, a star about 3000 light-years away), it was discovered in the year 2016 by the Kepler space telescope. Kepler 1606b orbits its star a little bit closer than the Earth's orbit to the Sun, at a distance of 0.64⋅rearth, where rearth=1.50×1011 m is the radius of Earth's orbit. The star Kepler 1606 is bit cooler than our Sun,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT