Question

7.2 A Brayton cycle gas engine is analyzed using the air standard method. Given the conditions...

7.2 A Brayton cycle gas engine is analyzed using the air standard method. Given the conditions at state 1, pressure ratio (rp), and cutoff ratio (rc) determine the efficiency and other values listed below. The specific heat ratio and gas constant for air is given as k=1.4 and R=0.287 kJ/kg-K respectively.

T1 (K) = 333

P1 (kPa) = 170

rp = 10.7

rc = 2.54

AV (m3/s) = 1.7

a) Determine the specific enthalpy (kJ/kg) at state 1.

b) Determine the relative pressure at state 1.

c) Determine the relative pressure at state 2.

d) Determine the temperature (K) at state 2.

e) Determine the pressure (kPa) at state 2.

f) Determine the specific enthalpy (kJ/kg) at state 2.

g) Determine the temperature (K) at state 3.

h) Determine the pressure (kPa) at state 3.

i) Determine the specific enthalpy (kJ/kg) at state 3.

j) Determine the relative pressure at state 3.

k) Determine the relative pressure at state 4.

l) Determine the temperature (K) at state 4.

m) Determine the pressure (kPa) at state 4.

n) Determine the specific enthalpy (kJ/kg) at state 4.

o) Determine the mass flow rate (kg/s) through the engine.

p) Determine the net power output (kW) for the engine.

q) Determine the rate of heat addition (kW) for the engine.

r) Determine the efficiency (%) of the engine.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...
A Diesel cycle engine is analyzed using the cold air standard method. Given the conditions at...
A Diesel cycle engine is analyzed using the cold air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. Given Values T1 (K) = 326 P1 (kPa) = 105 r = 16.5 rc = 1.8 a) Determine the specific internal energy (kJ/kg) at state 1. b) Determine the...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K and 95 kPa and a fixed turbine inlet temperature of 1650 K. For a compressor pressure ratio of 10, determine: (a) the exhaust temperature of the cycle, in K. (b) the back work ratio. (c) the net work developed per unit mass flowing, in kJ/kg. (d) the heat addition per unit mass flowing, in kJ/kg. (e) the thermal efficiency for the cycle.
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant k=1.4. Neglect changes in kinetic and potential energy. Consider a SSSF of air at 300 K and 100 kPa entering the compressor of a Simple Brayton Cycle Gas Turbine powerplant. The cycle pressure ratio is 40 and maximum cycle temperature is 1800 K. For compressor isentropic efficiency of 82% the compressor work input per unit mass = __ kJ/kg (enter the nearest positive integer...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a...
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a pressur ratio rp =p2/p1 2-3 heat addition at constant pressure untill the pressure is p3 3-4 isentropic expansion to the initial pressure 4-1 heat rejection at constnt pressure A- show that the cycle efficiency for this cycle is B-Air enters compressor of a gas turbine at 100kpa and 250c.for a pressure ratio of 5 and a maximum temp of 8500c , determine the thermal...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT