Question

n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K...

n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K and 95 kPa and a fixed turbine inlet temperature of 1650 K. For a compressor pressure ratio of 10, determine:


(a) the exhaust temperature of the cycle, in K.
(b) the back work ratio.
(c) the net work developed per unit mass flowing, in kJ/kg.
(d) the heat addition per unit mass flowing, in kJ/kg.
(e) the thermal efficiency for the cycle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air enters the compressor of an ideal brayton refrigeration cycle at 100 kPa, 300K. The compressor...
Air enters the compressor of an ideal brayton refrigeration cycle at 100 kPa, 300K. The compressor presure ratio is 3.75, and the temperature at the turbine inlet is 350 K. The Brayton cycle is then modified by the introduction of a regenerative heat exchanger. In the modified cycle, compressed air enters the regenerative heat exchanger at 350 K and is cooled to 320 K before enetering the turbine. Determine, for the modified cycle, (A) the lowest temperature, in K. (B)...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1800°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. % hp (b) the turbine and compressor isentropic efficiencies are 88 and 84%, respectively. % hp (c) the turbine and compressor...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant k=1.4. Neglect changes in kinetic and potential energy. Consider a SSSF of air at 300 K and 100 kPa entering the compressor of a Simple Brayton Cycle Gas Turbine powerplant. The cycle pressure ratio is 40 and maximum cycle temperature is 1800 K. For compressor isentropic efficiency of 82% the compressor work input per unit mass = __ kJ/kg (enter the nearest positive integer...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a...
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a pressur ratio rp =p2/p1 2-3 heat addition at constant pressure untill the pressure is p3 3-4 isentropic expansion to the initial pressure 4-1 heat rejection at constnt pressure A- show that the cycle efficiency for this cycle is B-Air enters compressor of a gas turbine at 100kpa and 250c.for a pressure ratio of 5 and a maximum temp of 8500c , determine the thermal...
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7....
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7. Air enters the compressor at 300 K. The energy in the form of heat is transferred to the air in the amount of 950 kJ/kg. Using a variable specific heat for air and assuming the compressor isentropic efficiency is 83 percent and turbine isentropic efficiency is 85 percent. Determine the followings: (i) The highest temperature in the cycle (ii) The net work output, in...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
Incorrect answer. Your answer is incorrect. Try again. An air-standard Brayton cycle has a compressor pressure...
Incorrect answer. Your answer is incorrect. Try again. An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1900°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. Entry field with incorrect answer 47.56 % Entry field with incorrect answer 5468.73...
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system....
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system. Air is at 27°C and 110 kPa at the beginning of the isothermal compression process, during which 150 kJ/kg of heat is rejected. Heat transfer to air occurs at 950 K. The gas constant of air is R = 0.287 kJ/kg·K. a.)The maximum pressure in the cycle is? kPa b.)The net work output per unit mass of air is? kJ/kg c.)The thermal efficiency of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT