Question

tan plane at (1,1) v(j,k)= ln(10j^2 2k^2 + 1)

tan plane at (1,1)
v(j,k)= ln(10j^2 2k^2 + 1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x^2 + y^2 + z = 29 that lies above the plane z = 4 and is oriented upward.
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial...
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial position r(0)=j+k
Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at...
Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at (π, 1⁄2).
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 9)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 7 that lies above the plane z = 3 and is oriented upward.
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.    S F · dS =  
Let f = sin(yz) + ln(x) a) Find the derivative of F at P(1,1,Pi) in the...
Let f = sin(yz) + ln(x) a) Find the derivative of F at P(1,1,Pi) in the direction of v = i+j-k b) Find a vector u in the direction where f increases the fastest c) Find a nonzero vector w with the property that the derivative of f in the direction of w at P(1,1,pi) is 0
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Let ?(?, ?) = ??2 + ln(??). 1. Write the equation of the tangent plane to...
Let ?(?, ?) = ??2 + ln(??). 1. Write the equation of the tangent plane to the surface at (1, 1). 2. If ?(?,?)=?^(2?+?) and ?(?,?)=?+?,find ??/?u and ??/?v if ?=1 and ?=−2. 3. In what direction would ??⃑ (1, 1) be steepest? What is that value?
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux...
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux of F across the part of the paraboloid x2 + y2 + z = 20 that lies above the plane z = 4 and is oriented upward.