Question

Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at...

Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at (π, 1⁄2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Find an equation of the plane tangent to the surface xy ln x − y^2...
(a) Find an equation of the plane tangent to the surface xy ln x − y^2 + z^2 + 5 = 0 at the point (1, −3, 2) (b) Find the directional derivative of f(x, y, z) = xy ln x − y^2 + z^2 + 5 at the point (1, −3, 2) in the direction of the vector < 1, 0, −1 >. (Hint: Use the results of partial derivatives from part(a))
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of...
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of f(x, y) on the xy-plane. • Find the equation for the tangent plane to the surface at the point (4, 1/4 , 0). Give full explanation of your work
Find the equation of the tangent plane to the surface given by z = ln (2tan...
Find the equation of the tangent plane to the surface given by z = ln (2tan x - tan y) at (pi/4, pi/4, 0).
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x^2 + y^2 + z = 29 that lies above the plane z = 4 and is oriented upward.
1)Find an equation of the tangent plane to the surface given by the equation xy +...
1)Find an equation of the tangent plane to the surface given by the equation xy + e^2xz +3yz = −5, at the point, (0, −1, 2) 2)Find the local maximum and minimum values and saddle points for the following function: f(x, y) = x − y+ 1 xy . 3)Use Lagrange multipliers to find the maximum and minimum values of the function, f(x, y) = x^2 − y^2 subject to, x^2 + y 4 = 16.
Find the equation of the tangent line to the function f(x) = ln(7x) at x=4. (Use...
Find the equation of the tangent line to the function f(x) = ln(7x) at x=4. (Use symbolic notation and fractions where needed. Let y = f(x) and express the equation of the tangent line in terms of y and x.) equation:
3. Find the equation of the tangent line to the curve 2x^3 + y^2 = xy...
3. Find the equation of the tangent line to the curve 2x^3 + y^2 = xy at the point (−1, 1). 4. Use implicit differentiation to find y' for sin(xy^2 ) − x^3 = 4x + 2y. 5. Use logarithmic differentiation to find y' for y = e^4x cos(2x) / (x−1)^4 . 6. Show that d/dx (tan (x)) = sec^2 (x) using only your knowledge of the derivatives of sine/cosine with derivative rules. 7. Use implicit differentiation to show that...
Find the equation of the tangent plane and normal line to the curve 2z−5=ln( x 2...
Find the equation of the tangent plane and normal line to the curve 2z−5=ln( x 2 y 3 )− 6y x 2z−5=ln(x2y3)−6yx at (1,e)
1. Find the equation of the tangent plane to the function f ( x, y )...
1. Find the equation of the tangent plane to the function f ( x, y ) = x^2 + y^2 at the point (1,1). 2. Find a different solution to Laplace's equation.