Question

1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...

1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z}

2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If p = 2k − 1 is prime, show that k is an odd integer or...
If p = 2k − 1 is prime, show that k is an odd integer or k = 2. Hint: Use the difference of squares 22m − 1 = (2m − 1)(2m + 1).
8. Prove or disprove the following statements about primes: (a) (3 Pts.) The sum of two...
8. Prove or disprove the following statements about primes: (a) (3 Pts.) The sum of two primes is a prime number. (b) (3 Pts.) If p and q are prime numbers both greater than 2, then pq + 17 is a composite number. (c) (3 Pts.) For every n, the number n2 ? n + 17 is always prime.
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3....
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3. (ii) Prove that 3√2 (cube root) is irrational. Problem 3: Let p and q be prime numbers. (i) Prove by contradiction that if p+q is prime, then p = 2 or q = 2 (ii) Prove using the method of subsection 2.2.3 in our book that if p+q is prime, then p = 2 or q = 2 Proposition 2.2.3. For all n ∈...
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By...
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By showing (a) x^2+1 is a prime ideal or showing x^2 + 1 is not prime ideal. By showing (b) x^2-1 is a prime ideal or showing x^2 - 1 is not prime ideal. (Hint: R/I is an integral domain if and only if I is a prime ideal.)
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
4. Prove that if p is a prime number greater than 3, then p is of...
4. Prove that if p is a prime number greater than 3, then p is of the form 3k + 1 or 3k + 2. 5. Prove that if p is a prime number, then n √p is irrational for every integer n ≥ 2. 6. Prove or disprove that 3 is the only prime number of the form n2 −1. 7. Prove that if a is a positive integer of the form 3n+2, then at least one prime divisor...
Let m = 2k + 1 be an odd integer. Prove that k + 1 is...
Let m = 2k + 1 be an odd integer. Prove that k + 1 is the multiplicative inverse of 2, mod m.
Prove directly that the group 2Z = {2k | k ∈ Z} and the group 5Z...
Prove directly that the group 2Z = {2k | k ∈ Z} and the group 5Z = {5k | k ∈ Z} are isomorphic.
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive...
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive Pythagorean triple (x, y, z) containing y. (b) Prove that if x = 2k+1 is any odd positive integer greater than 1, then there exists a primitive Pythagorean triple (x, y, z) containing x. (c) Find primitive Pythagorean triples (x, y, z) for each of z = 25, 65, 85. Then show that there is no primitive Pythagorean triple (x, y, z) with z...
Define the set E to be the set of even integers; that is, E={x∈Z:x=2k, where k∈Z}....
Define the set E to be the set of even integers; that is, E={x∈Z:x=2k, where k∈Z}. Define the set F to be the set of integers that can be expressed as the sum of two odd numbers; that is, F={y∈Z:y=a+b, where a=2k1+1 and b=2k2+1}.Please prove E=F.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT