Question

QUESTION 2 Consider the differential equation: x2 y'' - 4 x y' + 6 y =...

QUESTION 2

  1. Consider the differential equation:

    x2 y'' - 4 x y' + 6 y = 4 x3

    If yc= c1 x2 + c2 x3, then yp(1) equals

    (enter only a number; yp(1) is the particular solution for the differential equation, evaluated at 1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
Consider differential equation: x3 (x2-1)2 (x2+1) y'' + (x-1) x y' + y = 0 .....
Consider differential equation: x3 (x2-1)2 (x2+1) y'' + (x-1) x y' + y = 0 .. Determine whether x=0 is a regular singular point. Determine whether x=1 is a regular singular point. Are there any regular singular points that are complex numbers? Justify conclusions.
2)(20 pts.) Find the general solution of the non-homogeneous differential equation y^(4) −4y^(3) +15y′′ −22y′ +10y...
2)(20 pts.) Find the general solution of the non-homogeneous differential equation y^(4) −4y^(3) +15y′′ −22y′ +10y = 2cos2x+e^x. Determine the complementary solution yc and particular solution yp do not evaluate the coefficients of yp. (I find it harder to evaluate without coefficients can you please especially pay attention to that, I promise I will give thumbs up)
1) Consider the following differential equation to be solved by variation of parameters. y'' + y...
1) Consider the following differential equation to be solved by variation of parameters. y'' + y = sec(θ) tan(θ) Find the complementary function of the differential equation. yc(θ) = Find the general solution of the differential equation. y(θ) = 2) Solve the given differential equation by undetermined coefficients. y'' + 5y' + 4y = 8 y(x) =
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find...
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find the most general solution to the associated homogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2. b. Find a particular solution to the nonhomogeneous differential equation y′′+9y=sec(3x). c. Find the most general solution to the original nonhomogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants.
Show that f(x) = C1e4x + C2e-2x is a solution to the differential equation: y’’ –...
Show that f(x) = C1e4x + C2e-2x is a solution to the differential equation: y’’ – 2y’ – 8y = 0, for all constants C1 and C2. Then find values for C1 and C2 such that y(0) = 1 and y’(0) = 0.
Consider the differential equation y' = x − y + 1: (a) Verify that y =...
Consider the differential equation y' = x − y + 1: (a) Verify that y = x + e^(1−x) is a solution to the above differential equation satisfying y(1) = 2; (b) Is the solution through (1, 2) unique? Justify your answer in a few sentences; (c) Is this differential equation separable? Find the general solution of y' = x − y + 1.
Solve below differential equation d2ydx2+2dydx+3y=2sin2x coefficients of final answer/s should be exact. Ie radical/fraction form Find...
Solve below differential equation d2ydx2+2dydx+3y=2sin2x coefficients of final answer/s should be exact. Ie radical/fraction form Find the complementary solution yc Find the particular integral yp Find general solution y(x) Find the particular solution yp(x)
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a...
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a solution satisfying the given initial conditions. y''-2y'-3y=6 y(0)=3 y'(0) = 11 yc= C1e-x+C2e3x yp = -2 C. a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions y'''+2y''-y'-2y=0, y(0) =1, y'(0) = 2, y''(0) = 0 y1=ex, y2=e-x,, y3= e-2x
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation...
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation with initial condition, f(0) = -1. Part (a) Find  . Show or explain your work, do not just give an answer.