Question

Consider the differential equation x2 dy + y ( x + y) dx = 0 with...

Consider the differential equation
x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1.

(2a) Determine the type of the differential equation. Explain why?
(2b) Find the particular solution of the initial value problem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point...
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point with initial condition x = –1 in the 2nd quadrant creates a relative minimum for its particular solution. c)Find the particular solution y=f(x)) to the given differential equation with initial condition f(0) = 2 d)For the solution in part c), find lim x aproaches 0 f(x)-2/tan(x^2+2x)
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or...
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem xy′+y=−8xy^2, y(1)=−1. (a) This differential equation can be written in the form (∗) with P(x)=_____, Q(x)=_____, and n=_____. (b) The substitution u=_____ will transform it into the linear equation du/dx+______u=_____. (c) Using the substitution in part...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0 with initial value y(0)= -1
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
3. Consider the differential equation: x dy/dx = y^2 − y (a) Find all solutions to...
3. Consider the differential equation: x dy/dx = y^2 − y (a) Find all solutions to the differential equation. (b) Find the solution that contains the point (−1,1) (c) Find the solution that contains the point (−2,0) (d) Find the solution that contains the point (1/2,1/2) (e) Find the solution that contains the point (2,1/4)
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation...
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation with initial condition, f(0) = -1. Part (a) Find  . Show or explain your work, do not just give an answer.
Find the solution to the separable differential equation dy = x cos2 y + sin x...
Find the solution to the separable differential equation dy = x cos2 y + sin x cos2 y satisfying π dx the initial condition y = 4 when x = π.