Question

a. Approximate the given quantity using Taylor polynomials with n=3. b. Compute the absolute error in...

a. Approximate the given quantity using Taylor polynomials with

n=3.

b. Compute the absolute error in the approximation assuming the exact value is given by a calculator.

sinh (0.24)

a. Approximate the given quantity using Taylor polynomials with

n=3.

b. Compute the absolute error in the approximation assuming the exact value is given by a calculator.

sinh (0.17)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Compute the derivative of the speed of sound in air with respect to the absolute...
(a) Compute the derivative of the speed of sound in air with respect to the absolute temperature, and show that the differentials dv and dT obey dv/v = 1/2 dT/T. (b) Use this result to estimate the percentage change in the speed of sound when the temperature changes from 0�C to 24.8�C. (c) If the speed of sound is 332 m/s at 0�C, estimate its value at 24.8�C using the differential approximation. (d) How does this approximation compare with the...
Use zero to third order approximations, respectively to determine f(x) = (4x - 6)3 using base...
Use zero to third order approximations, respectively to determine f(x) = (4x - 6)3 using base point xi = 2 by Taylor series expansion. Approximate f(4) and compute true percent relative error |εt| for each approximation.
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the...
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the solution of the given initial-value problem. (Give all answers to four decimal places.) dy dx + 3x2y = 9x2, y(0) = 4 h = 1     y(1) = h = 0.1     y(1) = h = 0.01     y(1) = h = 0.001     y(1) = (b) Verify that y = 3 + e−x3 is the exact solution of the differential equation. y = 3 + e−x3      ⇒     y'...
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(x) using the normal distribution and compare the result with the exact probability. n=73 p=0.82 x=53 a) Find​ P(x) using the binomial probability distribution: P(x) = b) Approximate P(x) using the normal distribution: P(x) = c) Compare the normal approximation with the exact probability. The exact probability is less than the approximated probability by _______?
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor...
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor polynomial approximate f(0.05) with 2 digits rounding and the find the relative error of the obtained value (Note f(0.05=1.0247). write down the answer and all the calculations steps in the text filed.
(a) Use the Trapezoidal rule with 4 equal partitions to approximate ? integral (from -1 to...
(a) Use the Trapezoidal rule with 4 equal partitions to approximate ? integral (from -1 to 1) (x^2 +1)dx via the formula Tn =(∆x/2)(y0+2y1+...+2yn−1+yn )with n=4, and ∆x=(b−a)/n (b) Compare the actual error, found by direct integration minus the approximation, with the known error bound for the Trapezoidal rule |ETn| ≤ (f′′(c)/12n^2) (b−a)^3, 12n2 where c is a point at which the absolute value of the second derivative is maximized.
Use the midpoint rule with the given value of n=6 to approximate \int_0^3 sin(x^(3))dx
Use the midpoint rule with the given value of n=6 to approximate \int_0^3 sin(x^(3))dx
The second-order Taylor polynomial fort he functions f(x)=x√x about X0= 1 is P2= -1/2+3x/2+3(x-1)^2/8 using the...
The second-order Taylor polynomial fort he functions f(x)=x√x about X0= 1 is P2= -1/2+3x/2+3(x-1)^2/8 using the given Taylor polynomial approximate f(1.05) with 2 digits rounding and the find the relative error of the obtained value (Note f(0.05=1.0759). write down the answer and all the calculations steps in the text filed.
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using...
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using l’Hˆopital’s rule. 2. Use Taylor’s remainder theorem to get the same result: (a) Write down P1(x), the first-order Taylor polynomial for sin(x) centered at a = 0. (b) Write down an upper bound on the absolute value of the remainder R1(x) = sin(x) − P1(x), using your knowledge about the derivatives of sin(x). (c) Express f(x) as f(x) = P1(x) x + R1(x) x...
Consider the following function. f(x) = ln(1 + 2x),    a = 1,    n = 3,    0.8 ≤ x ≤...
Consider the following function. f(x) = ln(1 + 2x),    a = 1,    n = 3,    0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the given interval. (Round your answer to six decimal places.) |R3(x)| ≤ (c) Check your result in part (b) by graphing |Rn(x)|.