Question

Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using...

Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using l’Hˆopital’s rule. 2. Use Taylor’s remainder theorem to get the same result: (a) Write down P1(x), the first-order Taylor polynomial for sin(x) centered at a = 0. (b) Write down an upper bound on the absolute value of the remainder R1(x) = sin(x) − P1(x), using your knowledge about the derivatives of sin(x). (c) Express f(x) as f(x) = P1(x) x + R1(x) x , and compute the limits of the two terms as x → 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using the Taylor Remainder Theorem, what is the upper bound on | f (x) − T3(x)|,...
Using the Taylor Remainder Theorem, what is the upper bound on | f (x) − T3(x)|, for x ∈ [4, 10] if  f (x)  =  2 sin (x) and T3(x) is the Taylor polynomial centered on 7.
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using...
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using the Taylor Remainder Theorem, find all values of x for which this approximation is within 0.00054 of the right answer. Assume for simplicity that we limit ourselves to |x|≤1. |x|≤ = 2. Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial:   (1+7x)^1/4 The first nonzero term is:     The second nonzero term is:     The third...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)=...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)= e^ x sin(x) about the point a = 0. (b) Bound the error |f(x) − p3(x)| using the Taylor Remainder R3(x) on [−π/4, π/4]. (c) Let pn(x) be the Taylor Polynomial of degree n of f(x) = cos(x) about a = 0. How large should n be so that |f(x) − pn(x)| < 10^−5 for −π/4 ≤ x ≤ π/4 ?
Consider the Taylor Series for f(x) = 1/ x^2 centered at x = -1  ...
Consider the Taylor Series for f(x) = 1/ x^2 centered at x = -1           a.) Express this Taylor Series as a Power Series using summation notation. b.) Determine the interval of convergence for this Taylor Series.
For this problem, consider the function f(x) = ln(1 + x). (a) Write the Taylor series...
For this problem, consider the function f(x) = ln(1 + x). (a) Write the Taylor series expansion for f(x) based at b = 0. Give your final answer in Σ notation using one sigma sign. (You may use 4 basic Taylor series in TN4 to find the Taylor series for f(x).) (b) Find f(2020) (0). Please answer both questions, cause it will be hard to post them separately.
Find the Taylor series for f(x) centered at the given value of a. [Assume that f...
Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] f(x) = sin(x),    a = pi/2
The function f(x)=lnx has a Taylor series at a=4 . Find the first 4 nonzero terms...
The function f(x)=lnx has a Taylor series at a=4 . Find the first 4 nonzero terms in the series, that is write down the Taylor polynomial with 4 nonzero terms.
Let f(x) = 2/ x and a = 1. (a) Find the third order Taylor polynomial,...
Let f(x) = 2/ x and a = 1. (a) Find the third order Taylor polynomial, T3(x), that approximates f near a. (b) Estimate the largest that |f(x)−T3(x)| can be on the interval [0.5,1.5] by using Taylor’s inequality for the remainder.
1. Consider the function f(x) = 2x^2 - 7x + 9 a) Find the second-degree Taylor...
1. Consider the function f(x) = 2x^2 - 7x + 9 a) Find the second-degree Taylor series for f(x) centered at x = 0. Show all work. b) Find the second-degree Taylor series for f(x) centered at x = 1. Write it as a power series centered around x = 1, and then distribute all terms. What do you notice?
2. Let f(x) = sin(2x) and x0 = 0. (A) Calculate the Taylor approximation T3(x) (B)....
2. Let f(x) = sin(2x) and x0 = 0. (A) Calculate the Taylor approximation T3(x) (B). Use the Taylor theorem to show that |sin(2x) − T3(x)| ≤ (2/3)(x − x0)^(4). (C). Write a Matlab program to compute the errors for x = 1/2^(k) for k = 1, 2, 3, 4, 5, 6, and verify that |sin(2x) − T3(x)| = O(|x − x0|^(4)).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT