Question

Find y as a function of t if 4y′′+36y′+101y=0, y(0)=9,y′(0)=3. y=

Find y as a function of t if 4y′′+36y′+101y=0, y(0)=9,y′(0)=3. y=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the general solution. 1- y^6(4)+12y''+36y=0 2-6y^(4)+5y'''+7y''+5y'+y=0 3-y^(4)-4y'''+7y''-6y'+2y=0
find the general solution. 1- y^6(4)+12y''+36y=0 2-6y^(4)+5y'''+7y''+5y'+y=0 3-y^(4)-4y'''+7y''-6y'+2y=0
Find y as a function of t if 16y''+4y=0, y(5)=5, y'(5)=6.
Find y as a function of t if 16y''+4y=0, y(5)=5, y'(5)=6.
Find y as a function of x if y‴−13y″+36y′=24ex y(0)=19,  y′(0)=30,  y″(0)=13 y(x)=
Find y as a function of x if y‴−13y″+36y′=24ex y(0)=19,  y′(0)=30,  y″(0)=13 y(x)=
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find...
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find the function y2(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y2(0)=0, y′2(0)=1. y2(t)= ? Find the Wronskian of these two solutions you have found: W(t)=W(y1,y2). W(t)=?
Find y as a function of x if y′′′+4y′=0, y(0)=3, y′(0)=−4, y′′(0)=8. y(x)= _____
Find y as a function of x if y′′′+4y′=0, y(0)=3, y′(0)=−4, y′′(0)=8. y(x)= _____
Find yy as a function of xx if y(4)−12y‴+36y″=0, y(0)=5,  y′(0)=14,  y″(0)=36,  y‴(0)=0 y(x)=?
Find yy as a function of xx if y(4)−12y‴+36y″=0, y(0)=5,  y′(0)=14,  y″(0)=36,  y‴(0)=0 y(x)=?
Find the solution of the initial value problem y′′+4y=t^2+4^(et), y(0)=0, y′(0)=3.
Find the solution of the initial value problem y′′+4y=t^2+4^(et), y(0)=0, y′(0)=3.
Find ? as a function of ? if ?‴−13?″+36?′=72?^?, y‴−13y″+36y′=72e^x, ?(0)=25, ?′(0)=30, ?″(0)=11
Find ? as a function of ? if ?‴−13?″+36?′=72?^?, y‴−13y″+36y′=72e^x, ?(0)=25, ?′(0)=30, ?″(0)=11
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
9. Solve the following IVP’s: (a) y'' + 4y = 4 + δ(t − 3π) y(0)...
9. Solve the following IVP’s: (a) y'' + 4y = 4 + δ(t − 3π) y(0) = 0, y'(0) = 1 (b) y'' + 2y' + y = e^t + 2δ(t − 2) y(0) = −1, y'(0) = 2 (c) y'' − 4y = 3δ(t) y(0) = −1, y'(0) = −2