Question

9. Solve the following IVP’s: (a) y'' + 4y = 4 + δ(t − 3π) y(0)...

9. Solve the following IVP’s:

(a) y'' + 4y = 4 + δ(t − 3π) y(0) = 0, y'(0) = 1

(b) y'' + 2y' + y = e^t + 2δ(t − 2) y(0) = −1, y'(0) = 2

(c) y'' − 4y = 3δ(t) y(0) = −1, y'(0) = −2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
y'' + 4y' + 5y = δ(t − 2π), y(0) = 0, y'(0) = 0 Solve...
y'' + 4y' + 5y = δ(t − 2π), y(0) = 0, y'(0) = 0 Solve the given IVP using the Laplace Transform. any help greatly appreciated :)
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
solve for x(t) and y(t): x'=-3x+2y; y'=-3x+4y x(0)=0,y(0)=2
solve for x(t) and y(t): x'=-3x+2y; y'=-3x+4y x(0)=0,y(0)=2
solve the following DE using laplace transform y"+4y'+4y=0; y(0)=-2, y'(0)=9
solve the following DE using laplace transform y"+4y'+4y=0; y(0)=-2, y'(0)=9
Use Laplace Transforms to solve the following IVPs . 4y′′+4y′+5y=−t ; y(0)=0 , y′(0)=0
Use Laplace Transforms to solve the following IVPs . 4y′′+4y′+5y=−t ; y(0)=0 , y′(0)=0
solve y''+4y'+4y=0 y(0)=1, y'(0)=4 IVP
solve y''+4y'+4y=0 y(0)=1, y'(0)=4 IVP
Solve the IVP y¨ − 5 y˙ + 4y = e^t , y(0) = 3, y˙(0)...
Solve the IVP y¨ − 5 y˙ + 4y = e^t , y(0) = 3, y˙(0) = 1/3
Solve the following differential equations using inspection: 1) y”+4y=12 2) y””+4y”+4y=-20 3) (D^4 -4D^2)y=24 4) y”-y=x-1...
Solve the following differential equations using inspection: 1) y”+4y=12 2) y””+4y”+4y=-20 3) (D^4 -4D^2)y=24 4) y”-y=x-1 5) D(D-3)y=4 6) (D^2+2D-8)(D+3)y=0 7) y”-y’-2y=18xe^(2x)
2. Solve the initial-value problem: y′′′ + 4y′ = t, y(0) = y′(0) = 0, y′′(0)...
2. Solve the initial-value problem: y′′′ + 4y′ = t, y(0) = y′(0) = 0, y′′(0) = 1.