Question

If C(x) = 14000 + 600x − 0.6x2 + 0.004x3 is the cost function and p(x)...

If C(x) = 14000 + 600x − 0.6x2 + 0.004x3 is the cost function and p(x) = 1800 − 6x is the demand function, find the production level that will maximize profit. (Hint: If the profit is maximized, then the marginal revenue equals the marginal cost.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the given cost function C(x)=2600+590x+1.2x2 and the demand function p(x)=1770 Find the production level that...
Given the given cost function C(x)=2600+590x+1.2x2 and the demand function p(x)=1770 Find the production level that will maximize profit.   
The revenue function of a company is given by R(x)=-2x^2+25x+150, the cost function is given by...
The revenue function of a company is given by R(x)=-2x^2+25x+150, the cost function is given by C(x)=13x+100 a. Find the marginal cost and marginal revenue function. b. Find the production level x where the profit is maximized. Then find the maximum profit.
Given the given cost function C(x)=5350+700x+1.5x2C(x)=5350+700x+1.5x2 and the demand function p(x)=2100p(x)=2100. Find the production level that...
Given the given cost function C(x)=5350+700x+1.5x2C(x)=5350+700x+1.5x2 and the demand function p(x)=2100p(x)=2100. Find the production level that will maximize profit.??
1. The cost function C and the price-demand function p are given. Assume that the value...
1. The cost function C and the price-demand function p are given. Assume that the value of C(x)  and p(x) are in dollars. Complete the following. C(x) = x^2/100 + 6x + 1000; p(x) = x/20+25 (a) Determine the revenue function R and the profit function P. R(x) =    P(x) = (b) Determine the marginal cost function MC and the marginal profit function MP. MC(x) =    MP(x) = 3. Determine the derivative for the given single-term function. When appropriate,...
The cost function C and the price-demand function p are given. Assume that the value of...
The cost function C and the price-demand function p are given. Assume that the value of C(x) and p(x) are in dollars. Complete the following. C(x) = x2 100 + 7x + 3000; p(x) = − x 40 + 5 (a) Determine the revenue function R and the profit function P. R(x) = P(x) = (b) Determine the marginal cost function MC and the marginal profit function MP. MC(x) = MP(x) = Here is a picture of the problem: https://gyazo.com/b194ec1a9b7787b8b81ad12388ff915e
The cost function for producing x items is C(x) = 45000 + 25x - 0.10x^2. The...
The cost function for producing x items is C(x) = 45000 + 25x - 0.10x^2. The revenue function R(x) = 750 - 0.60x^2. a.Determine the production cost for the first 500 items. b.The marginal cost function. c.How fast is the cost growing when production is at 500 units. d.The average cost per item for the first 500 items. e.The marginal revernue function R'(x). f.The profit function. g.The marginal profit function. h.What production level maximizes revenue.
The price-demand equation and the cost function for the production of 4K Tv’s are given respectively....
The price-demand equation and the cost function for the production of 4K Tv’s are given respectively. x = 9000 − 30p and c(x) = 150000 + 30x Where x is the number of 4k TV’s that can be sold at a price p and c(x) is the total cost in dollars in producing x Tv’s. a) Express the price p as a function of demand x, and find the domain of this function. b) Find the marginal cost function c)...
If the cost function (in thousands of dollars) for a product is C(x) = 56x+182 (where...
If the cost function (in thousands of dollars) for a product is C(x) = 56x+182 (where x represents thousands of the product), and the price function in p = 256-50x, what price and quantity will maximize profit? What will this profit be? (Hint Profit = Revenue - Cost)
* City Computers has determined that the price-demand and revenue functions are given by p(x) =...
* City Computers has determined that the price-demand and revenue functions are given by p(x) = 2,000 – 6x and R(x) = x(2,000 – 6x), where x is in thousands of computers. This means that R(x) is measured in thousands of dollars. Additionally we know: * The fixed cost is $100,000. * The variable cost is $250 per computer. This means that the cost function is given by C(x) = 100 + 250x. Also again C(x) is measured in thousands...
Cost, revenue, and profit are in dollars and x is the number of units. A firm...
Cost, revenue, and profit are in dollars and x is the number of units. A firm knows that its marginal cost for a product is MC = 3x + 30, that its marginal revenue is MR = 70 − 5x, and that the cost of production of 60 units is $7,380. (a) Find the optimal level of production. units (b) Find the profit function. P(x) = (c) Find the profit or loss at the optimal level. There is a of...