Question

Find the​ steady-state vector for the matrix below: {0.6, 0.3, 0.1}, {0, 0.2, 0.4}, {0.4, 0.5,...

Find the​ steady-state vector for the matrix below: {0.6, 0.3, 0.1}, {0, 0.2, 0.4}, {0.4, 0.5, 0.5}

The numbers listed here are the rows of a 3x3 matrix. Any help is appreciated as I do not understand steady state vectors very well

Homework Answers

Answer #1

The given matrix is A =

0.6

0.3

0.1

0

0.2

0.4

0.4

0.5

0.5

If X = (x,y,z)T is the steady state vector, then AX = X or, (A-I3)X = 0. To solve this equation, we need to reduce the matrix A-I3 to its RREF which is

1

0

-5/8

0

1

-1/2

0

0

0

Hence, the equation (A-I3)X = 0 is equivalent to x-5z/8 = 0 or, x = 5z/8 and y-z/2 = 0 or, y = z/2. Then, X =(5z/8,z/2,z)T =(z/8)(5,4,8)T.

Hence, (5,4,8)T is the steady state vector for the given matrix A.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the​ steady-state vector for the matrix below: {0.7, 0.2, 0.2}, {0.1, 0.6, 0.1}, {0.2, 0.2,...
Find the​ steady-state vector for the matrix below: {0.7, 0.2, 0.2}, {0.1, 0.6, 0.1}, {0.2, 0.2, 0.7} The numbers listed here are the rows of a 3x3 matrix.
Find the equilibrium vector for the transition matrix below. 0.4...0.4...0.2 0.8...0.1...0.1 0.4...0.2...0.4
Find the equilibrium vector for the transition matrix below. 0.4...0.4...0.2 0.8...0.1...0.1 0.4...0.2...0.4
Find the stable distribution for the regular stochastic matrix. 0.6 0.7 0.2 0.1 0.2 0.5 0.3...
Find the stable distribution for the regular stochastic matrix. 0.6 0.7 0.2 0.1 0.2 0.5 0.3 0.1 0.3 Find the stable distribution. x        __ y    = __ z        __
Markov Chain Matrix 0 1 0 0.4 0.6 1 0.7 0.3 a.) suppose process begins at...
Markov Chain Matrix 0 1 0 0.4 0.6 1 0.7 0.3 a.) suppose process begins at state 1 and time =1 what is the probability it will be at state 0 at t=3. b.) What is the steady state distribution of the Markov Chain above
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4...
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4 0.2     ? P = 0.6 0.3    ? 0.5 0.3    ? And initial probability vector a = [0.2, 0.3, ?] a) What are the missing values (?) in the transition matrix an initial vector? b) P(X1 = 0) = c) P(X1 = 0|X0 = 2) = d) P(X22 = 1|X20 = 2) = e) E[X0] = For the Markov Chain with state-space, initial vector, and...
You have collected data that are exponentially distributed:  pdf f(x)= θexp(-xθ), x>0. 0.1, 0.2, 0.3, 0.4, 0.5,...
You have collected data that are exponentially distributed:  pdf f(x)= θexp(-xθ), x>0. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. 1) Determine the maximum likelihood estimation of θ. 2) Implement the central limit theorem to obtain a 95% CI for θ.
a) Find the steady-state vector for the transition matrix. .8 1 .2 0 x= ______ __________...
a) Find the steady-state vector for the transition matrix. .8 1 .2 0 x= ______ __________ b) Find the steady-state vector for the transition matrix. 1 7 4 7 6 7 3 7 These are fractions^ x= _____ ________
For the Markov matrix [0.8 0.3 0.2 0.7 ] there is a steady state and the...
For the Markov matrix [0.8 0.3 0.2 0.7 ] there is a steady state and the product of the final probabilities is (note columns sum to one). At a courthouse every person visiting must pass through an explosives detector. The explosives detector is 90% accurate when detecting the presence of explosives on a person but suffers from a 5% false positive rate. Past studies have determined that the probability that a random person will bring explosives into the courthouse is...
In this question you will find the steady-state probability distribution for the regular transition matrix below...
In this question you will find the steady-state probability distribution for the regular transition matrix below with 3 states A, B, and C. A B C A 0.0 0.5 0.5 B 0.8 0.1 0.1 C 0.1 0.8 0.1 Give the following answers as fractions OR as decimals correct to at least 5 decimal places. What is the long term probability of being in state A? What is the long term probability of being in state B? What is the long...
Initial state and transition matrices are given below. Find the state matrices for the next two...
Initial state and transition matrices are given below. Find the state matrices for the next two stages. (Round your answers to three decimal places.) M0 = 0.25 0.50 0.25 , T = 0.4 0.2 0.4 0.1 0.3 0.6 0.2 0.5 0.3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT