Question

Evaluate (if possible) the vector-valued function at each given value of t. (If you need to...

Evaluate (if possible) the vector-valued function at each given value of t. (If you need to use Δt, enter Deltat.)

r(t) = 1/2t2i − (t − 9)j

Evaluate (if possible) the vector-valued function at each given value of t. (If an answer does not exist, enter DNE.)

r(t) = cos(t)i + 9 sin(t)j

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the vectors T and N and the binormal vector B = T ⨯ N, for...
Find the vectors T and N and the binormal vector B = T ⨯ N, for the vector-valued function r(t) at the given value of t. r(t) = 6 cos(2t)i + 6 sin(2t)j + tk,    t0 = pi/4 find: T(pi/4)= N(pi/4)= B(pi/4)=
Given that the acceleration vector is a ( t ) = (−9 cos( 3t ) )...
Given that the acceleration vector is a ( t ) = (−9 cos( 3t ) ) i + ( −9 sin( 3t ) ) j + ( −5 t ) k, the initial velocity is v ( 0 ) = i + k, and the initial position vector is r ( 0 ) = i +j + k, compute: the velocity vector and position vector.
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The velocity vector v(t) B. The position vector r(t)
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y) = xy i + 9y2 j r(t) = 16t6 i + t4 j, 0 ≤ t ≤ 1
Given r(t)=sin(t)i+cos(t)j−ln(cos(t))k, find the unit normal vector N(t) evaluated at t=0,N(0).
Given r(t)=sin(t)i+cos(t)j−ln(cos(t))k, find the unit normal vector N(t) evaluated at t=0,N(0).
Use a computer to graph the curve with the given vector equation. Make sure you choose...
Use a computer to graph the curve with the given vector equation. Make sure you choose a parameter domain and view-points that reveal the true nature of the curve r(t)=< te^t, e^-t, t> r(t) = < cos(8cos t) sint t , sin(8cos t) sin t, cos t > Please I need to graph in MATLAB these are problems for Stewart Calculus 8th edition. I don't not how to use matlab please I need the commands. Thank you for your help!
Find the velocity, acceleration, and speed of a particle with the given position function. (a) r(t)...
Find the velocity, acceleration, and speed of a particle with the given position function. (a) r(t) = e^t cos(t)i+e^t sin(t)j+ te^tk, t = 0 (b) r(t) = 〈t^5 ,sin(t)+ t ^ cos(t),cos(t)+ t^2 sin(t)〉, t = 1
Solve the initial value problems in Exercises 11–20 for r as a vector function of t....
Solve the initial value problems in Exercises 11–20 for r as a vector function of t. 15. Differential equation: dr/dt = (tan t)i +(cos(t /2 ))j - (sec(2t))k Initial condition: r(0) = 3i - 2j + k
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 5, 0...
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent...
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent vector T. (ii) principal unit normal vector N.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT