Question

If 1600 square centimeters of material is available to make a box with a square base...

If 1600 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
Volume =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
I do not want to waste my question count so please give me the correct answer...
I do not want to waste my question count so please give me the correct answer with step-by step. Thank you and have a nice day. If 2400 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
A closed box with a square base is to have a volume of 2000in2. The material...
A closed box with a square base is to have a volume of 2000in2. The material for the top and bottom of the box is to cost $6 per in2, and the material for the sides is to cost $3 per in2. If the cost of the material is to be the least, find the dimensions of the box. Prove/justify your answer.
A box with a square base and an open top must have a volume of 864...
A box with a square base and an open top must have a volume of 864 cm^3. Find the dimensions of the box that minimize the amount of material used.  
A rectangular box with a square base has a volume of 4 cubic feet. The material...
A rectangular box with a square base has a volume of 4 cubic feet. The material for the bottom of the box costs $3 per square foot, the top costs $2 per square foot, and the four sides cost $5 per square foot Find the critical number of the cost function.
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular box with a square base has a volume of 4 cubic feet. The material...
A rectangular box with a square base has a volume of 4 cubic feet. The material for the bottom of the box costs $3 per square foot, the top costs $2 per square foot, and the four sides cost $5 per square foot. (a) If x is the side length of the square base, and y is the height of the box, find the total cost of the box as a function of one variable. (b) Find the critical number...
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
An open-topped box is to have a square base and a volume of 10 ?3. The...
An open-topped box is to have a square base and a volume of 10 ?3. The cost per square meter of material is $5 for the bottom and $2 for the four sides. Let ? be the length of the base of the box and ℎ be the height of the box. Let ? be the total cost of material required to make the box. a. Express ? as a function of ? and find its domain. b. Find the...