Question

A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by...

A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by rotating the curve y =√x, 0 ≤ x ≤ 4, around the y-axis. Find the work that is required to pump all the liquid out of the tank, from the top of the tank. All the lengths are in units of meter [m]. Do not forget to use gravitational constant g = 9.8[m/s2 ].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Create a bucket by rotating around the y axis the curve y = 3 ln (...
Create a bucket by rotating around the y axis the curve y = 3 ln ( x − 6 ) from y = 0 to y = 4. If this bucket contains a liquid with density 880 kg/m3 filled to a height of 2 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity.
please answer A water tank has the shape obtained by rotating the curve y = x...
please answer A water tank has the shape obtained by rotating the curve y = x 2 , 0 ≤ x ≤ 2 about the y−axis (x and y are measured in meters). It is full of water. Find the work required to pump all of the water out of the tank. (The density of water is ρ=1000kg/m.)
A trough is filled with a liquid of density 885 kg/m3. The ends of the trough...
A trough is filled with a liquid of density 885 kg/m3. The ends of the trough are equilateral triangles with sides 6 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.)
A trough is filled with a liquid of density 830 kg/m3. The ends of the trough...
A trough is filled with a liquid of density 830 kg/m3. The ends of the trough are equilateral triangles with sides 6 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.)
A trough is filled with a liquid of density 875 kg/m3. The ends of the trough...
A trough is filled with a liquid of density 875 kg/m3. The ends of the trough are equilateral triangles with sides 14 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.) Answer in Newtons
A trough is filled with a liquid of density 810 kg/m3. The ends of the trough...
A trough is filled with a liquid of density 810 kg/m3. The ends of the trough are equilateral triangles with sides 4 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.) answer in: N
. A conical tank of with radius 5 m and height 10 m is filled with...
. A conical tank of with radius 5 m and height 10 m is filled with water. Calculate the work against gravity required to pump water (with density 1000 kg/m3 ) through a spout of 1 meter in height located at the top of the tank.
A tank is filled with 8m water (density water = 1000 kg/m^3) and 2 m oil...
A tank is filled with 8m water (density water = 1000 kg/m^3) and 2 m oil (density oil = 900 kg/ m^3).Flow is discharged at the bottom from a circular exit section with 5 mm diamter. Ignoring all frictional effects, determine the a) Velocity in exit section if the top tank pressure is atmospheric b) Flow rate in exit section if the top tank pressure is -25 kPa vacuum.
A conical tank of diameter 6 m and height 10 m is filled with water. Compute...
A conical tank of diameter 6 m and height 10 m is filled with water. Compute for the work needed to pump all the water 2 m above the tank. The water has a density of 1000 kg per cubic meter.
A tank in the shape of a right circular cylinder, with a height of 15m and...
A tank in the shape of a right circular cylinder, with a height of 15m and a radius of 8m, is full of gasoline. How much work is required to pump all the gasoline over the top of the tank (density of gasoline: ρ = 720kg/m3 and acceleration due to gravity g = 9.8m/s2 ).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT