Question

Solve the initial value problem. y′ + y = sin (7x), y(0) = 1 y(x) =...

Solve the initial value problem.

y′ + y = sin (7x), y(0) = 1

y(x) = ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Solve the initial-value problem. x' + 7x = e−7t cos(t),      x(0) = −1 x(t) =
Solve the initial-value problem. x' + 7x = e−7t cos(t),      x(0) = −1 x(t) =
Solve the initial value problem x′=−3x−y, y′= 13x+y, x(0) = 0, y(0) = 1.
Solve the initial value problem x′=−3x−y, y′= 13x+y, x(0) = 0, y(0) = 1.
Solve the Initial Value Problem: ?x′ = 2y−x y′ = 5x−y Initial Conditions: x(0)=2 y(0)=1
Solve the Initial Value Problem: ?x′ = 2y−x y′ = 5x−y Initial Conditions: x(0)=2 y(0)=1
Find the solution of the initial-value problem. y'' + y = 4 + 3 sin(x), y(0)...
Find the solution of the initial-value problem. y'' + y = 4 + 3 sin(x), y(0) = 7, y'(0) = 1
solve the following initial value problem x' = 2xy y' = y -2t +1 x(0) =...
solve the following initial value problem x' = 2xy y' = y -2t +1 x(0) = x0 y(0) = y0
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) −...
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) − x3 + ln(y)) dy = 0,    y(0) = e
solve the following initial value problem y(3)+y'' = 5x + 8e-x, y(0)=1, y'(0)=0, y''(0)=1
solve the following initial value problem y(3)+y'' = 5x + 8e-x, y(0)=1, y'(0)=0, y''(0)=1
Solve the initial value problem y'(x) = 10e2xy(x) with y(0) = 4e5
Solve the initial value problem y'(x) = 10e2xy(x) with y(0) = 4e5
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT