Question

solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=

solve the given initial value problem

dx/dt=7x+y x(0)=1

dt/dt=-6x+2y y(0)=0

the solution is x(t)= and y(t)=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
Solve the initial value problem x′=x+y y′= 6x+ 2y+et, x(0) = 0, y(0) = 0.
Solve the initial value problem x′=x+y y′= 6x+ 2y+et, x(0) = 0, y(0) = 0.
Consider the following initial value problem: dx/dt + 7x/t = et^4, x(1) =2 (a) Find an...
Consider the following initial value problem: dx/dt + 7x/t = et^4, x(1) =2 (a) Find an integrating factor for the differential equation. (b) Use the integrating factor to solve the initial value problem
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
Solve the initial value problem. 5d^2y/dt^2 + 5dy/dt - y = 0; y(0)=0, y'(0)=1
Solve the initial value problem. 5d^2y/dt^2 + 5dy/dt - y = 0; y(0)=0, y'(0)=1
dy/dt=x , dx/dt=6x-8y, x=1 and y=-1 when t=0
dy/dt=x , dx/dt=6x-8y, x=1 and y=-1 when t=0
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0...
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0 and dy/dt(0) = 1 where g(t) = t/2 for 0<t<6 and g(t) = 3 for t>6
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0)...
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0) = -1/3
Solve the initial value problem. d^2y/dx^2= -3 csc^2 x; y' (pi/4)=0; y(pi/2)=0 The solution is y=____.
Solve the initial value problem. d^2y/dx^2= -3 csc^2 x; y' (pi/4)=0; y(pi/2)=0 The solution is y=____.
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) =...
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) = -1, y(0) = 6