Question

Solve the initial-value problem. x' + 7x = e−7t cos(t),      x(0) = −1 x(t) =

Solve the initial-value problem.

x' + 7x = e−7t cos(t),

    

x(0) = −1

x(t) =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the initial value problem: x'+3x=e^(-3t)*cos(t), x(0)=-1 x(t)=?
Solve the initial value problem: x'+3x=e^(-3t)*cos(t), x(0)=-1 x(t)=?
Solve this Initial Value Problem using the Laplace transform. x''(t) - 9 x(t) = cos(2t), x(0)...
Solve this Initial Value Problem using the Laplace transform. x''(t) - 9 x(t) = cos(2t), x(0) = 1, x'(0) = 3
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Solve the initial value problem x' = [ 0, 1; -2, 3]x + [0, e^t], x(0)...
Solve the initial value problem x' = [ 0, 1; -2, 3]x + [0, e^t], x(0) = [1, 1]
Solve the initial value problem. y′ + y = sin (7x), y(0) = 1 y(x) =...
Solve the initial value problem. y′ + y = sin (7x), y(0) = 1 y(x) = ?
use Laplace transformations to solve initial value problem x''+4x=cos(t), x(0)=0, x'(0)=0 set up the appropriate form...
use Laplace transformations to solve initial value problem x''+4x=cos(t), x(0)=0, x'(0)=0 set up the appropriate form of a particular solution, do not determine coefficients, y''+6y'+13y=e-3x cos2x find the Laplace transformation of the following function f(t)=4cos(2t) + 7t3 - 5e-3t
Use Laplace Transform to solve the initial value problem x''+2x'+2x=e-t x(0)=x'(0)=0.
Use Laplace Transform to solve the initial value problem x''+2x'+2x=e-t x(0)=x'(0)=0.
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
Solve the initial value problem. x'=x+2y y'=7x+y with inition contitions x(0)=2 and y(0)=4.
consider the initial value problem x"+16x=16u(t)-16u(t-2), x(0)=1, x'(0)=0 solve this initival value problem, and, for t>2...
consider the initial value problem x"+16x=16u(t)-16u(t-2), x(0)=1, x'(0)=0 solve this initival value problem, and, for t>2 determine the amplitude and period of the motion
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.