Question

A company plans to manufacture closed rectangular boxes that have a volume of 108 ft^3. Find...

A company plans to manufacture closed rectangular boxes that have a volume of 108 ft^3.

Find the dimensions that will minimize the cost if the material for the top and bottom costs half

as much as the material for the sides.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3...
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3 per square foot while the sides cost $2 per square foot. Find the dimensions of the box that will minimize the total cost.
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
ASAP A company plans to manufacture a rectangular container with a square base, an open top,...
ASAP A company plans to manufacture a rectangular container with a square base, an open top, and a volume of 320 cm3. The cost of the material for the base is 0.8 cents per square centimeter, and the cost of the material for the sides is 0.2 cents per square centimeter. Determine the dimensions of the container that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular box is to have a square base and a volume of 40 ft^3. If...
A rectangular box is to have a square base and a volume of 40 ft^3. If the material for the base costs $0.36/ft^2, the material for the sides costs $0.05/f^2, and the material for the top costs $0.14/ft^2, determine the dimensions of the box that can be constructed at minimum cost. length____ft width____ ft height________ ft
A rectangular box with a volume of 272 ft. cubed is to be constructed with a...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a square base and top. The cost per square foot for the bottom is15cents, for the top is10cents, and for the other sides is 2.5 cents. What dimensions will minimize the​ cost? What are the dimensions of the box? The length of on side of the base is ___ The height of the box is___ (Rounds to one decimal place as needed)
a closed rectangular container with a square base is to have a volume of 2400 cubic...
a closed rectangular container with a square base is to have a volume of 2400 cubic cm. it costs three times as much per square cm for the top and bottom as it does for for the side. find the dimensions of the container of least cost.
A storage company must design a large rectangular container with a square base. The volume is...
A storage company must design a large rectangular container with a square base. The volume is 24576ft324576⁢ft3. The material for the top costs $12$⁢12 per square foot, the material for the sides costs $2$⁢2 per square foot, and the material for the bottom costs $12$⁢12 per square foot. Find the dimensions of the container that will minimize the total cost of material.
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
You have been asked to design a closed rectangular box that holds a volume of 25...
You have been asked to design a closed rectangular box that holds a volume of 25 cubic centimeters while minimizing the cost of materials, given that the material used for the top and bottom of the box cost 4 cents per square centimeter, and the material used for sides cost 9 cents per square centimeter. Find the dimensions of this box in terms of variables L, W, and H.