Question

ASAP A company plans to manufacture a rectangular container with a square base, an open top,...

ASAP
A company plans to manufacture a rectangular container with a square base, an open top, and a volume of 320 cm3. The cost of the material for the base is 0.8 cents per square centimeter, and the cost of the material for the sides is 0.2 cents per square centimeter. Determine the dimensions of the container that will minimize the cost of manufacturing it. What is the minimum cost?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular storage container with an open top and a square base is to be constructed....
A rectangular storage container with an open top and a square base is to be constructed. Material for the bottom costs $6/sq-ft, and material for the sides costs $3/sq-ft. If a total of $72 is budgeted for material expenses, what are the dimensions of the container that holds the largest volume?
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A storage company must design a large rectangular container with a square base. The volume is...
A storage company must design a large rectangular container with a square base. The volume is 24576ft324576⁢ft3. The material for the top costs $12$⁢12 per square foot, the material for the sides costs $2$⁢2 per square foot, and the material for the bottom costs $12$⁢12 per square foot. Find the dimensions of the container that will minimize the total cost of material.
A rectangular storage container with an open top is to have a volume of 10 m3....
A rectangular storage container with an open top is to have a volume of 10 m3. The length of this base is twice the width. Material for the base costs $10 per square meter. Material for the sides costs $6 per square meter. Find the cost of materials for the cheapest such container. (Round your answer to the nearest cent.)A rectangular storage container with an open top is to have a volume of 10 m3. The length of this base...
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
A rectangular storage container with an open top is to have a volume of 20^3. The...
A rectangular storage container with an open top is to have a volume of 20^3. The length of its base is twice the width. Material for the base costs $15 per square meter. Material for the sides costs $7 per square meter. Find the cost function for the container. Find the cost of materials for the cheapest such container.
A rectangular storage container with an open top is to have a volume of 10 m³....
A rectangular storage container with an open top is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs $12 per square meter. Material for the sides costs $5 per square meter. Find the cost of materials for the cheapest such container. ​
A rectangular bulk fruit storage container with an open top is to have a volume of...
A rectangular bulk fruit storage container with an open top is to have a volume of 10 cubic meters. The length of its base is twice the width. Material for the base costs $20 per square meter. Material for the sides will cost $9 per square meter. Find the cost of materials for the cheapest such container.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT