Question

You have been asked to design a closed rectangular box that holds a volume of 25...

You have been asked to design a closed rectangular box that holds a volume of 25 cubic centimeters while minimizing the cost of materials, given that the material used for the top and bottom of the box cost 4 cents per square centimeter, and the material used for sides cost 9 cents per square centimeter. Find the dimensions of this box in terms of variables L, W, and H.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a rectangular milk carton box of width w, length l, and height h which holds...
Design a rectangular milk carton box of width w, length l, and height h which holds 512 cm3 of milk. The sides of the box cost 1 cent/cm2 and the top and bottom cost 3 cent/cm2. Find the dimensions of the box that minimize the total cost of materials used.
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A closed rectangular box is going to be built in such a way that its volume...
A closed rectangular box is going to be built in such a way that its volume corresponds to 6m3. The cost of the material for the top and bottom is $ 20 per square meter. The cost for the sides is $ 10 per square meter. What are the dimensions of the box that produce a minimum cost?
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular box must have a volume of 2 cubic meters. The material for the base...
A rectangular box must have a volume of 2 cubic meters. The material for the base and top costs $ 2 per square meter. The material for the vertical sides costs $ 8 per square meter. (a) Express the total cost of the box in terms of the length (l) and width (w) of the base. C = $ (b) Find the dimensions of the box that costs least. length = meters width = meters height = meters
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A closed box with a square base is to have a volume of 2000in2. The material...
A closed box with a square base is to have a volume of 2000in2. The material for the top and bottom of the box is to cost $6 per in2, and the material for the sides is to cost $3 per in2. If the cost of the material is to be the least, find the dimensions of the box. Prove/justify your answer.
A rectangular box with a volume of 272 ft. cubed is to be constructed with a...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a square base and top. The cost per square foot for the bottom is15cents, for the top is10cents, and for the other sides is 2.5 cents. What dimensions will minimize the​ cost? What are the dimensions of the box? The length of on side of the base is ___ The height of the box is___ (Rounds to one decimal place as needed)
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3...
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3 per square foot while the sides cost $2 per square foot. Find the dimensions of the box that will minimize the total cost.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT