Question

Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k...

Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k ≤ p − 1. Prove that p divides p!/ (k! (p-k)!).

Homework Answers

Answer #1

Above rule applicable of all types of natural number (not just for the prime numbers)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for any integer a, k and prime p, the following three statements are all...
Prove that for any integer a, k and prime p, the following three statements are all equivalent: p divides a, p divides a^k, and p^k divides a^k.
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2...
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2 then a divides b.
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer...
Let A be a 2 × 2 matrix satisfying A^k = 0 for some positive integer k. Show that A^2 = 0.
If p = 2k − 1 is prime, show that k is an odd integer or...
If p = 2k − 1 is prime, show that k is an odd integer or k = 2. Hint: Use the difference of squares 22m − 1 = (2m − 1)(2m + 1).
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Let p be an odd prime and let a be an odd integer with p not...
Let p be an odd prime and let a be an odd integer with p not divisible by a. Suppose that p = 4a + n2 for some integer n. Prove that the Legendre symbol (a/p) equals 1.
Formal Proof: Let p be a prime and let a be an integer. Assume p ∤...
Formal Proof: Let p be a prime and let a be an integer. Assume p ∤ a. Prove gcd(a, p) = 1.
4. Prove that if p is a prime number greater than 3, then p is of...
4. Prove that if p is a prime number greater than 3, then p is of the form 3k + 1 or 3k + 2. 5. Prove that if p is a prime number, then n √p is irrational for every integer n ≥ 2. 6. Prove or disprove that 3 is the only prime number of the form n2 −1. 7. Prove that if a is a positive integer of the form 3n+2, then at least one prime divisor...
Activity 6.6. (a) A positive integer that is greater than 11 and not prime is called...
Activity 6.6. (a) A positive integer that is greater than 11 and not prime is called composite. Write a technical definition for the concept of composite number with a similar level of detail as in the “more complete” definition of prime number. Note. A number is called prime if its only divisors are 1 and itself. This definition has some hidden parts: a more complete definition would be as follows. A number is called prime if it is an integer,...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P(...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P( x> k-1)- P( X>k) for any positive integer k. assume that for all k>=1 we have P(x>k)=q^k. use (a) to show that x is a geometric random variable.