Question

Question 1 (4 marks) A stock selling at $50 is expected to pay no dividend and...

Question 1

A stock selling at $50 is expected to pay no dividend and has a volatility of 40%. Consider put options with a 6-month maturity and a $50 strike price. The risk-free rate is 10% per annum continuously compounded.
Consider a three-step binomial tree.
(a) Use the binomial tree to price the put option if it is American.

Homework Answers

Answer #1

Solution:

The price of the option is $4.982

Formula used:

Note: Give it a thumbs up if it helps! Thanks in advance!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree? In the question above, what is the value of a 12-month American put...
The current price of a non-dividend paying stock is $50. Use a two-step tree to value...
The current price of a non-dividend paying stock is $50. Use a two-step tree to value a American put option on the stock with a strike price of $50 that expires in 12 months. Each step is 6 months, the risk free rate is 5% per annum, and the volatility is 50%. What is the value of the option according to the two-step binomial model. Please enter your answer rounded to two decimal places (and no dollar sign).
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free...
A stock index is currently 1,500. ITs volatility is 18% per annum. The continuously compounded risk-free rate is 4% per annum for all maturities. (1) Calculate values for u,d, and p when a six-month time step is used. (2) Calculate the value a 12-month American put option with a strike price of 1,480 given by a two-step binomial tree.
The current price of a non-dividend paying stock is $50. Use a two-step tree to value...
The current price of a non-dividend paying stock is $50. Use a two-step tree to value a European put option on the stock with a strike price of $50 that expires in 12 months. Each step is 6 months, the risk free rate is 5% per annum, and the volatility is 50%. What is the value of the option according to the two-step binomial mode
A 3-month American call option on a stock has a strike price of $20. The stock...
A 3-month American call option on a stock has a strike price of $20. The stock price is $20, the risk-free rate is 3% per annum, and the volatility is 25% per annum. A dividend of $1 per share is expected at the end of the second month. Use a three-step binomial tree to calculate the option price.
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the...
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the strike price is $40, the risk-free rate is 4% per annum, the volatility is 30% per annum, and the time to maturity is 6 months. (a) Calculate u, d, and p for a two-step tree. (b) Value the option using a two-step tree. (c) Verify that DerivaGem gives the same answer. (d) Use DerivaGem to value the option with 5, 50, 100, and 500...
The current price of a non-dividend-paying stock is $40. Over the next year it is expected...
The current price of a non-dividend-paying stock is $40. Over the next year it is expected to rise to $42 or fall to $37. An investor buys put options with a strike price of $41 expiring in one year. Please form a riskless portfolio and use no arbitrage method to value this put option. Risk free rate is 3% per annum, continuously compounded.
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
A ten-month European put option on a dividend-paying stock is currently selling for $4. The stock...
A ten-month European put option on a dividend-paying stock is currently selling for $4. The stock price is $40, the strike price is $43, and the risk-free interest rate is 6% per annum. The stock is expected to pay a dividend of $2 two months later and another dividend of $2 eight months later. Explain the arbitrage opportunities available to the arbitrageur by demonstrating what would happen under different scenarios.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT