Question

Find the d.f.t of two finite sequences f[n]= -3,-1,-7 and g[n]= 4, 0, 1/2. and find...

Find the d.f.t of two finite sequences f[n]= -3,-1,-7 and g[n]= 4, 0, 1/2. and find the convolution.

thank you

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given F(2) = 1, F'(2) = 7, F(4) = 3, F′(4) = 7 and G (4)...
Given F(2) = 1, F'(2) = 7, F(4) = 3, F′(4) = 7 and G (4) = 2 , G′(4)= 6, G(3)= 4, G′(3)=11, find the following. (a) H(4) if H(x) = F(G(x)) H(4) = (b) H′(4) if H(x) = F(G(x)) H′(4) = (c) H(4) if H(x) = G(F(x)) H(4) = (d) H′(4) if H(x) = G(F(x)) H'(4)=
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0...
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0 (1) = 1, f0 (2) = 4, g0 (1) = 8, g0 (2) = −4. (a) Suppose h(x) = f(x^2 g(x)). Find h 0 (1). (b) Suppose j(x) = f(x) sin(x − 1). Find j 0 (1). (c) Suppose m(x) = ln(x)+arctan(x) e x+g(2x) . Find m0 (1).
Given a matrix F = [3 6 7] [0 2 1] [2 3 4]. Use Cramer’s...
Given a matrix F = [3 6 7] [0 2 1] [2 3 4]. Use Cramer’s rule to find the inverse matrix of F. Given a matrix G = [1 2 4] [0 -3 1] [0 0 3]. Use Cramer’s rule to find the inverse matrix of G. Given a matrix H = [3 0 0] [-1 1 0] [-2 3 2]. Use Cramer’s rule to find the inverse matrix of H.
Q) Find f. f''(x)= −2+36x−12x^2,    f(0)=7, f'(0)=12 f(x)= Q) Find f f''(t)=sint+cost,    f(0)=2,    f'(0)=3 f(t)= Q) Find f f''(x)=20x^3+12x^2+4,    f(0)=4,  &nbs
Q) Find f. f''(x)= −2+36x−12x^2,    f(0)=7, f'(0)=12 f(x)= Q) Find f f''(t)=sint+cost,    f(0)=2,    f'(0)=3 f(t)= Q) Find f f''(x)=20x^3+12x^2+4,    f(0)=4,    f(1)=2 f(x)=
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.
5. Part I If f(x) = 2x 2 - 3x + 1, find f(3) - f(2)....
5. Part I If f(x) = 2x 2 - 3x + 1, find f(3) - f(2). A. 0 B. 7 C. 17 Part II If G( x ) = 5 x - 2, find G-1(x). A. -5x + 2 B. (x + 2)/5 C. (x/5) + 2 Please help me solve this problem and if you can please also show or explain how you got that answer. Thank you! :)
1. Find the radius of convergence for: ∞∑n=1 (−1)^n x^n / √n+9 2. If f(x)=∞∑n=0 n...
1. Find the radius of convergence for: ∞∑n=1 (−1)^n x^n / √n+9 2. If f(x)=∞∑n=0 n /n^2+1 x^n and g(x)=∞∑n=0 (−1)^n n /n^2+1 x^n, find the power series of 1/2(f(x)+g(x)). ∞∑n=0 =
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Suppose that 4?/(7+?)=∑?=0∞????.4x/(7+x)=∑n=0∞cnxn. Find the first few coefficients. ?0=c0= ?1=c1= ?2=c2= ?3=c3= ?4=c4= Find the radius...
Suppose that 4?/(7+?)=∑?=0∞????.4x/(7+x)=∑n=0∞cnxn. Find the first few coefficients. ?0=c0= ?1=c1= ?2=c2= ?3=c3= ?4=c4= Find the radius of convergence ?R of the power series. ?=R=
Consider the functions f(x) and g(x), for which f(0)=2, g(0)=4, f′(0)=12 and g′(0)= -2 find h'(0)...
Consider the functions f(x) and g(x), for which f(0)=2, g(0)=4, f′(0)=12 and g′(0)= -2 find h'(0) for the function h(x) = f(x)/g(x)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT