Question

Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0...

Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0 (1) = 1, f0 (2) = 4, g0 (1) = 8, g0 (2) = −4.

(a) Suppose h(x) = f(x^2 g(x)). Find h 0 (1).

(b) Suppose j(x) = f(x) sin(x − 1). Find j 0 (1).

(c) Suppose m(x) = ln(x)+arctan(x) e x+g(2x) . Find m0 (1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Differentiate the following functions. Do not simplify. (a) f(x) = x^7 tan(x) (b) g(x) =...
1. Differentiate the following functions. Do not simplify. (a) f(x) = x^7 tan(x) (b) g(x) = sin(x) / 5x + ex (c) h(x) = (x^4 + 3x^2 - 6)^5 (d) i(x) = 4e^sin(9x) (e) j(x) = ln(x) / x5 (f) k(x) = ln(cot(x)) (g) L(x) = 4 csc^-1 (x2) (h) m(x) = sin(x) / cosh(x) (i) n(x) = 2 tanh^-1 (x4 + 1)
3) If A =     3   1     and   B =    1    7                   0 -2  &
3) If A =     3   1     and   B =    1    7                   0 -2                     5    -1 Find a)      BA            b) determinant B         c) Adjoint A                d) A-1                     4) Using matrix method solve the following simultaneous equations                           5x – 3y = 1                         2x – 2y = -2    5) Given that f(x) = 6x - 5 g(x) = 3x + 4 and h(x) = 4x – 6                                                                                          2     Find:- i)...
Given F(2) = 1, F'(2) = 7, F(4) = 3, F′(4) = 7 and G (4)...
Given F(2) = 1, F'(2) = 7, F(4) = 3, F′(4) = 7 and G (4) = 2 , G′(4)= 6, G(3)= 4, G′(3)=11, find the following. (a) H(4) if H(x) = F(G(x)) H(4) = (b) H′(4) if H(x) = F(G(x)) H′(4) = (c) H(4) if H(x) = G(F(x)) H(4) = (d) H′(4) if H(x) = G(F(x)) H'(4)=
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3....
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3. Find the value of h'(1). 1) h(x)=f(x) g(x) 2) h(x)=xf(x) / x+g(x)
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1....
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1. Find h'(2). a. h(x)=2f(x)-5g(x) h'(2)=? b. h(x)=f(x)g(x) h'(2)=? c. h(x)=f(x)/g(x) h'(2)=? d. h(x)=g(x)/1+f(x) h'(2)=?
1020) y=8/sqrt(4x^7)=Ax^B + C. y'=Kx^F + G. y'(9)=H. Find A,B,C,K,F,G,H. ans:7 1026) Find the derivative of...
1020) y=8/sqrt(4x^7)=Ax^B + C. y'=Kx^F + G. y'(9)=H. Find A,B,C,K,F,G,H. ans:7 1026) Find the derivative of y=(5x^(1/4) - 8x^(1/7))^3, when x=2. ans:1 1010) y=3x^2 + 2x + 5 and y'=Ax^2 + Bx + C. Find A,B,C. Next Question: y=(x^2)/7 + x/4 + 2 and y'=Hx^2 + Fx + G. Find H,F,G. ans:6
1a.) Find the linearization of the function f(x) = (sin x+1)^2 at a = 0. 1b.)...
1a.) Find the linearization of the function f(x) = (sin x+1)^2 at a = 0. 1b.) Differentiate the two functions below. f(x) = ln(e^x - sin x) ; g(x) = e^-x^2
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and...
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and g'' are continuous for all x-values on [−1, √3/2 ]. Suppose that the only local extrema that f has on the interval [−1, √3/2 ] is a local minimum at x = 1/2 . (a) Determine the open intervals of increasing and decreasing for g on the interval [1/2 , √3/2] . (b) Suppose f(1/2) = 0 and f(√3/2) = 2. Find the absolute...
Solve the following a) 2 cos^2(4x) + 5 cos(4x) + 2 = 0. b) arctan(3x +...
Solve the following a) 2 cos^2(4x) + 5 cos(4x) + 2 = 0. b) arctan(3x + 3) = π/4 c) 2^1+sin^2(x) = 4^sin(x) d) ln(x + 3) = ln(x) + ln(3)
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5....
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5. Find h'(2). (a) h(x) = 3f(x) − 5g(x) h'(2) h(x) = f(x)g(x) h'(2) = h(x) = f(x) g(x) h'(2) =(d) h(x) = g(x) 1 + f(x) h'(2) =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT