Air flows in a pipe with a diameter, D=50 mm. The inlet
conditions are: M1 = 3; total pressure,
P01 = 1000 kPa absolute; and temperature, T1 = 550 K. The friction
coefficient is, f = 0.004. The exit Mach number decreases with the
length of the pipe.
Write a Matlab code and plot the following while the
exit Mach number to be changed from 2.5 to 0.99 with decrements
of ?M=0.01:
a) L, length of the pipe that is going to give the desired
exit Mach number,
b) the P2, pipe exit pressure, c) T2, pipe exit temperature,
d) P02, pipe exit total pressure.
Editable code:
M2=0.99:0.01:2.5;
L=13.501-(8.9275./M2.^2)+10.7137*log((1+0.2*M2.^2)./M2.^2);
plot(M2,L)
set(gca,'Xdir', 'reverse')
xlabel('M2 values')
ylabel('L (in m)values')
title('L Vs M2 plot')
Editable code:
M2=0.99:0.01:2.5;
P2=(81.66./M2.^2).*(sqrt(2.8./(1+0.2*M2.^2)));
plot(M2,P2)
set(gca,'Xdir', 'reverse')
xlabel('M2 values')
ylabel('P2 (in kPa) values')
title('P2 Vs M2 plot')
Editable code:
M2=0.99:0.01:2.5;
T2=1540./(1+0.2*M2.^2);
plot(M2,T2)
set(gca,'Xdir', 'reverse')
xlabel('M2 values')
ylabel('T2 (in K) values')
title('T2 Vs M2 plot')
Editable code:
M2=0.99:0.01:2.5;
P_02=(3000./M2).*(2.8./(1+0.2*M2.^2)).^-3;
plot(M2,P_02)
set(gca,'Xdir', 'reverse')
xlabel('M2 values')
ylabel('P_02 (in kPa) values')
title('P_02 Vs M2 plot')
Get Answers For Free
Most questions answered within 1 hours.