Question

In addition to thermal energy, one can also use photons to impart energy to Si so...

In addition to thermal energy, one can also use photons to impart energy to Si so that some electrons from the valence band can jump over to the conduction band. What is the maximum wavelength of the light that can be used to excite an electron from the valence band to the conduction band of Si at 300K? The same electrons can fall back to the valence band giving out the energy as radiation. Calculate the wavelength of the light emitted if the material is Si. Is this in the visible region or in the infrared region?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A light-emitting diode (LED) is a semiconductor device (p-n junction diode) that emits light when an...
A light-emitting diode (LED) is a semiconductor device (p-n junction diode) that emits light when an electric current is passed through it. LEDs are becoming the most popular light sources because they are much more energy efficient than conventional incandescent light sources. While the "white" light produced by a light bulb or the sun is a blend of many different colors, and these sources typically produce a large amount of heat, LEDs release only one particular color of light, and...
A solar cell is built from a semiconductor material, such as Si, in contact with a...
A solar cell is built from a semiconductor material, such as Si, in contact with a metal. As we will see later, when the semiconductor is doped, an internal voltage is created within the semiconductor. When photoelectrons are produced via the photoelectric effect, these freed electrons move due to this internal voltage, creating electric current. (a) If silicon’s work function (i.e. the energy to free an electron from an atom) is 1.2 eV, what is the maximum photon wavelength that...
MUST Answer Part A, B and C A) Calculate the rate of heat flow transferred through...
MUST Answer Part A, B and C A) Calculate the rate of heat flow transferred through an aluminum bar that is 25 square cm in cross section and 30 cm long. The thermal conductivity of the aluminum bar is ?? = 205 ??/(?? ? ??). The temperature at the hot end is 100°F while at the cold end is 20°F B) Blue light of wavelength 485 nm falls on a silicon photocell made from a semiconductor with bandgap is 1.35...
I- Answer true or false, as considered. 1- ___ According to Bohr's atomic model, electrons can...
I- Answer true or false, as considered. 1- ___ According to Bohr's atomic model, electrons can jump from any level (ni) to another farther away from the nucleus (nf) losing the energy difference DE = Ei - Ef. 2- ___ For a partition that travels with the velocity of the electron, it is not possible to determine its position and velocity at the same time. 3- ___ According to the construction principle (Principle of Aubauf), when doing the electronic exercises...
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the speed of light. Identify and rank the different types of radiation which comprise the electromagnetic spectrum. Explain why classical mechanics doesn't describe electromagnetic radiation. Describe the photoelectric effect and relate the energy and/or intensity of the photons to the work function and kinetic energy of the ejected electrons. Explain the origin of atomic and emission spectra and relate these spectra to discrete energy levels....
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT